
H E W L E T T - P A C K A R D
CD

M A Y 1 9 8 7

© Copr. 1949-1998 Hewlett-Packard Co.

H E W _ E T T P A C K A R D

May 1987 Volume 38 > Number 5

Articles

4Sta te -o f - the-Ar t CAD Works ta t ions fo r Mechan ica l Des ign , by Wol fgang Kurz , D ie te r
S o m m e r , f o r W e r n e r , D i e t e r D e y k e , a n d H e i n z P . A r n d t E a s i n g d r a f t i n g t a s k s f o r

des igners , th is sys tem a lso prov ides a shared data base and can t ransmi t commands d i rec t ly
to NC machinery.

1 2 E x a m p l e M a c r o

1 4 M E S e r i e s 1 0 L i n k t o H P - F E

1 5 T h e M E S e r i e s 1 0 N C L i n k s

1 6
M E C A D G e o m e t r y C o n s t r u c t i o n , D i m e n s i o n i n g , H a t c h i n g , a n d P a r t S t r u c t u r i n g , b y
Kar l -He inz Werner , S tephen Y ie , F r iedhe lm M. Ot t l i czky , Haro ld B . Pr ince , and He inz

D iebe l ha tch ing l i nes and c i r c l es a id l ayou t , and d imens ion ing and ha tch ing adap t au tomat
ica l ly to par t design changes.

30 A lpha S i t e Eva lua t i on o f ME Se r i es 5 /10 , by Pau l Ha rmon The bes t way t o eva lua te
a CAD system is to des ign a real product wi th i t .

Research Report

O Â £ T I n t r a b u i l d i n g D a t a T r a n s m i s s i o n U s i n g P o w e r - L i n e W i r i n g , b y R o b e r t A P i e t y
O O Widely varing attenuation, noise, and crosstalk are some of the obstacles to overcome.

Departments

3 I n t h i s I s s u e
3 W h a t ' s A h e a d

3 4 A u t h o r s

Editor. Richard P. Doian â€¢ Associate Editor, Business Manager, Kenneth A. Shaw â€¢ Assistant Editor, Nancy R, Teater â€¢ Art Director, Photographer, Arvid A, Danielson
Support European Susan E Wright â€¢ Administ rat ive Serv ices, Typography, Anne S. LoPrest i â€¢ European Product ion Superv isor , Michael Zandwi jken

2 HEWLETT-PACKARD JOURNAL MAY 1987 ! Hewlet t -Packard Company 1987 Pr inted in Hol land

© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue
HP DesignCenter is the name given to a col lect ion of design automat ion

sof tware packages that run on the HP 9000 fami ly of technical computers.
These so f tware a re too ls tha t he lp e lec t ron ic , mechan ica l , and so f tware
engineers be more ef fect ive in the i r jobs. What they do is o f ten spoken of
in acronyms â€” CAE (computer-aided engineering), CAD (computer-aided de
sign), issue, (computer-aided manufacturing). On pages 4 to 33 of this issue,
des igners o f the HP Des ignCenter Mechan ica l Eng ineer ing Ser ies 5 and
Series 10 systems, our cover subjects, describe the structure and operat ion
of these advanced two-dimensional design and draf t ing packages. Automat

ing the challenges of designing mechanical parts presented numerous engineering challenges that
required contr ibut ions in user interface design, memory management and data structure design,
and algor i thm design. For ME Ser ies 10, an addi t ional design chal lenge was the requirement to
communicate wi th systems for f in i te e lement st ructural analys is and systems that t ranslate part
data machine instructions for the numerically controlled (NC) machine tools that make the parts. The
paper interface. is 4 describes the ME Series 5/10 products and their user interface. The system is
designed the be both easy to learn for the novice and powerful enough not to l imit or frustrate the
expert . The command language and i ts user-def inable macro fac i l i ty are noteworthy. Data st ruc
tures and algor i thms for geometry construct ion, d imensioning, hatching, and parts def in i t ion are
discussed in the paper on page 16. On page 30 is an unusual (for us) report f rom an HP Division
that acted as an alpha test s i te for the ME Series 5/10 and is now using these systems to design
printer parts.

Because i t 's already there, electr ic wir ing has long been used for many things besides carrying
e lec t r i c power . In homes, fo r example , some cord less te lephones, in te rcoms, mus ic sys tems,
appl iance cont ro l lers , and burg lar a larms use the power l ines, sav ing the expense of separate
wir ing. Not surpr is ingly, people are now connect ing computers over local area networks (LANs)
tha t have the power l i nes fo r da ta commun ica t ions . On page 35 , we have a repor t on an HP
Laborator ies research pro ject on power- l ine LANs. The research revealed s igni f icant obstac les
to re l iab le data communica t ions over power l ines , inc lud ing h igh no ise leve ls and h igh s igna l
a t tenuat ion that vary wi th t ime and f rom s i te to s i te . To deal wi th these condi t ions, a wideband
scheme much tested and found to permit usable data rates up to 100,000 bi ts per second, much
higher than previously reported.

-R. P. Do/an

What's Ahead
The June issue wi l l cover a var iety of topics, including HP's Human Interface Link (HP-HIL) for

personal computer and workstation input devices, the design of a low-cost HP-HIL graphics tablet,
interprocess communication mechanisms for UNIX systems, and software verif ication using branch
ana lys is . Comple t ing the issue is a V iewpo in t a r t i c le on the d i rec t ion o f CMOS techno logy by
Yoshio Nishi.

T h e H P J o u r n a l L e t t e r s t e c h n i c a l d i s c u s s i o n o l t h e t o p i c s p r e s e n t e d i n r e c e n t a r t i c l e s a n d w i l l p u b l i s h l e t t e r s e x p e c t e d t o b e o f i n t e r e s t t o o u r r e a d e r s . L e t t e r s m u s t b e b r i e f a n d a r e s u b j e c t
t o e d i t i n g 9 4 3 0 4 , s h o u l d b e a d d r e s s e d t o : E d i t o r , H e w l e t t - P a c k a r d J o u r n a l . 3 2 0 0 H i l l v i e w A v e n u e , P a l o A l t o , C A 9 4 3 0 4 , U . S . A .

M A Y 1 9 8 7 H E W L E T T - P A C K A R D J O U R N A L 3

© Copr. 1949-1998 Hewlett-Packard Co.

State-of- the-Art CAD Workstat ions for
Mechanical Design
Part of HP's DesignCenter, the ME Series 5/10 workstations
s impl i fy the creat ion o f par t drawings and the des ign of
mechan ica l assembl ies . A shared data base improves
communica t ion among des igners on a pro jec t and the
resul ts can be format ted automat ica l ly for use by NC
manufactur ing machinery.

by Wolfgang Kurz , Dieter Sommer, Kar l -Heinz Werner , Dieter Deyke, and Heinz P. Arndt

BUILDING A HIGH-PERFORMANCE CAD SYSTEM
takes more than putting a number of wonderful fea
tures together. The majority of today's CAD (com

puter-aided design) systems for mechanical engineering
can more or less do the job, but many of the systems demand
an extensive amount of training before the user can become
productive. Another concern is that as a user's proficiency
grows, requests for modification, customization, and new
features arise.

To resolve some of these difficulties and to provide de
signers with tools to aid them in their designs, HP has
developed a family of workstations, the HP DesignCenter,
for use in various technical fields. Two examples are the
Mechanical Engineering Series 5 and Series 10 (Fig. 1)

discussed here. These workstations represent one of a
group of HP projects to develop software for various CAD
systems and more general interactive graphic systems. Soft
ware reusability is a high priority in these projects. This
not only saves substantial development effort, but also ben
efits the user by providing a uniform set (or subset) of
functions across a range of products.

Another HP DesignCenter goal was building a CAD user
interface that enables productive use of a system after only
a few days, even for a novice without formal training. At
the same time, the system does not disappoint an expert
user. The ME Series 5/10 provides over 250 commands and
functions with different options for many of them. A very
efficient method of combining these primitives to form

Fig . 1 . The Mechan ica l Eng ineer
ing Ser ies 5 and Ser ies 10 Work
stat ions of HP's DesignCenter are
ve rsa t i l e sys tems fo r two -d imen
s i o n a l d r a f t i n g (S e r i e s 5 a n d
Ser ies W) and mechanical design
(Ser ies 10) appl icat ions. Both fea
tu re a f r iend ly and easy- to - learn
user interface designed for techni
ca l i l l us t ra to rs , d ra f te rs , and en
g i n e e r s . T h e S e r i e s 5 p r o v i d e s
many too ls fo r the prepara t ion o f
drawings, f lowcharts, schematics,
l ayou t s , and documen ta t i on and
c a n b e e a s i l y u p g r a d e d t o t h e
Se r i es 10 , wh i ch p rov ides many
fac i l i t ies for mechanical engineer
ing des ign such as parametr ic de
s ign evaluat ions, customizabi l i ty ,
and - in ter faces to o ther CAD sys
tems (e.g., for f inite-element analy
s is) and to numer ica l ly contro l led
(NC) machinery.

4 HEWLETT-PACKARD JOURNAL MAY 1987

© Copr. 1949-1998 Hewlett-Packard Co.

6 8 . 8

Fig . 2 . A typ ica l ME Ser ies 5 /10 drawing.

more complex command structures provides the experi
enced user with a powerful tool for daily design tasks.

Feature Highlights
The HP DesignCenter Mechanical Engineering Series 5

and 10 are advanced two-dimensional design and drafting
systems for mechanical engineering applications. Fig. 2
shows a typical ME Series 5/10 mechanical drawing.

The ME Series 5 and ME Series 10 have the same software
architecture, basic user interface, and model data struc
tures. The ME Series 5 offers a subset of the ME Series 10
capabilities at an economical price. It is upward compatible
with and upgradable to the ME Series 10.

ME Series 10 features include:
â€¢ Comprehensive construction and annotation capability
â€¢ Choice of user interfaces â€” tablet/screen or screen only
â€¢ Powerful command set to perform fast design modifica

tions
â€¢ Sophisticated macro language for parametric design and

design evaluations
Â» Customizability for specific applications
â€¢ Interfaces to other CAD systems (ICES), NC machines,

and finite element analysis systems.
The ME Series 5 offers the same features with the follow

ing limitations:
â€¢ Limited drawing size
â€¢ Limited macro capabilities
â€¢ No editing for hatch parameters, attributes, or fillets

â€¢ No interfaces to NC, FE, or IGES systems.
ME Series 5/10 construction geometry simplifies the

work previously done using a pencil, compass, and ruler
on a drafting board. Construction geometry consists of basic
figures like circles and endless lines. There is a mode to
overdraw the construction geometry, like inking in the pen
cil lines. The user can also create real (inked) geometry
directly. The set of geometry elements includes third-order
splines (with damping) which can be converted into a con
tour of tangent lines and arcs if the geometry is to be trans
ferred to an NC system (numerically controlled automatic
machining equipment). Besides the easy handling of texts
and symbols, other annotations such as hatching and di
mensioning not only comply with different standards like
ANSI, ISO, DIN, or JIS, but are sophisticated enough to be
updated automatically when the associated geometry is
altered. The ability to create assemblies and hierarchically
structured parts simplifies the handling of large amounts
of data. Since the data base can be shared with other design
ers at other ME Series 5/10 workstations, each designer can
always have ready access to other parts affecting the design
er's particular design. (See the article on page 16 for details
about ME Series 5/10 geometry, dimensioning, hatching,
and parts.)

The ME Series 5/10 products are tailored for the HP 9000
Series 300 Computers,1 but are also supported on the HP
9000 Series 200 Computers. They take full advantage of
the different hardware configurations and the broad range

MAY 1987 HEWLETT-PACKARD JOURNAL 5

© Copr. 1949-1998 Hewlett-Packard Co.

of supported peripherals. The operating systems the prod
ucts run under are the HP-UX operating system and the
Pascal workstation systems (Series 200). An interface to
each operating system is provided to take advantage of all
of the features of the operating system.

The hardware configuration can be as simple as a single
stand-alone 16-bit workstation using a medium-resolution
monochrome display and a mouse as the input device. For
more sophisticated applications, it can be extended to a
network of 32-bit, floating-point workstations with high-
resolution color displays, B/A3-size graphics tablets, print
ers, a choice of disc drives with storage capacities from
270 kbytes to 571 Mbytes, and E/AO-size plotters with auto
matic paper feed to provide multiple frame plots.

Customers with special applications need to customize
their systems. The ability to run other programs on-line,
together with a macro programming capability, makes the
ME Series 5/10 useful to customers other than those in the
mechanical and electromechanical design fields. Various
macros, symbols, text fonts, and standard parts are avail
able.

Customizing also means being able to use the system in
the user's native language. Localized versions for France,
Italy, and Germany are available. A Japanese version with
approximately 4000 Kanji characters is available; it sup
ports 16-bit Kanji characters in the editor, macros, menus,
help subsystem, and text commands.

ME Series 5/10 is designed to restrict the user as little
as possible. For instance, the number of elements in the
model or drawing is bound only by the memory (or virtual
memory) available. The number of macros, screen tablet
menu fields, simultaneous text fonts, or symbols is limited
only by the underlying operating system.

The ME Series 5/10 is compatible with earlier HP CAD
products like HP Draft, HP EGS, and HP Design. The valu
able data created by these systems can be transferred to
the ME Series 5/10. An open system architecture not only
means having interfaces to other HP products, but also an
ICES to Graphics Exchange Specification) interface to
systems made by other manufacturers.

F i g . 3 . S o f t w a r e a r c h i t e c t u r e o f
the ME Series 5/10.

Software Architecture
The design goal for the software architecture was to de

velop a uniform user interface and operating system inter
face for all commands and functions, and mechanisms for
additional commands, new applications, and different data
bases. The U-shaped area in Fig. 3 contains all the software
dealing with the user interface, customizing, command
parsing, I/O device support, and general operating system
support. Action routines define all user interaction for a
specific command or function. The command's syntax is
only defined inside the action routine. Action doers are
more general modules containing mathematical algorithms
and various calculations.

User Interface
The large functionality built into ME Series 5/10 is ac

cessed by means of a command language with a defined
syntax. However, for more efficient work and easier learn
ing it was necessary to create a friendly environment for
all commands and functions. There are combined graphics
tablet/screen and screen-only user interfaces. All tablet and
screen menus have been defined with ME Series 5/10 com
mands using the ME Series 5/10 macro language and can
be easily customized by the user.
Catching a Point. The ME Series 5/10 catch mechanism
allows the user to catch (select) a point in various ways.
The point caught is the closest point of a preselected type
within the circular area around the cursor center. It may
be the closest vertex (end point), intersection, grid, or per
pendicular projection point of the cursor center onto an
element, or nothing. The catch mode can be changed at
any time. Hence, while creating a polygon, it is possible
to change the catch mode from vertex to intersection to get
the third polygon point correctly. The window can simi
larly be changed to get a point outside of the current win
dow. Catching is confined to the cursor area boundaries.
These boundaries can be set by the user, who can always
see the cursor on the screen and has complete control of
the catch results. Hence, it's not possible to catch an inter
section point in the upper right corner of the viewport by

6 HEWLETT-PACKARD JOURNAL MAY 1987

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 4. ME Senes 5/70 fab/ef overtay.

indicating a point in its lower left corner when the cursor
size is five pixels.
Tablet/Screen User Interface. The ME Series 5/10 tablet
area can be used for two different purposes: to pick the
geometry points and to choose commands or functions. An
overlay (Fig. 4) indicates the softkey locations on the tablet.

Following the desktop metaphor, we put all commands
and funct ions tha t should a lways be avai lab le on the
graphics tablet, while the items that are mainly used in
certain design phases are found in screen submenus. This
defines a clear and easy-to-learn structure for the user in
terface and makes its use much more effective. For example,
a user can pick window functions or construction geometry
commands from the tablet at any time without needing to
change the CREATE screen submenu for that purpose.

The tablet overlay consists of:
â€¢ A column with often-used commands: DELETE, CONFIRM.

UNDO, END, CANCEL, and HELP.
â€¢ Functions that can interrupt the active command at any

time and functions for display options. Examples are
SHOW, WINDOW, CATCH, RULER/GRID, and COLOR.

â€¢ Selection items that are normally used together with
certain commands.

â€¢ A numeric keypad.
â€¢ Two columns with screen submenu calls.

On the tablet overlay, commands have a dark gray back
ground color, functions and selection items are placed on
a l ight gray background, and screen submenu calls are
printed on a white background.

All commands and functions that are mainly used in
special design phases have been collected in screen sub
menus with one or two screens each. The screen submenus
are:
â€¢ CREATE (two screens). General drawing commands for

real geometry. Hence, a user can create real geometry
and construction geometry at the same time since the
construction geometry block is placed on the tablet over
lay.

â€¢ DIMENSION (two screens). Automatic or manual dimen
sioning and unit conversion.

â€¢ HATCH. Automatic or manual hatch, and simple hatches
and hatch patterns.

â€¢ TEXT (two screens). Editing of texts and leader lines and
font selection.

â€¢ FILE (two screens). Loading, storing, directory catalogs
with sorting items, and general file operations.

â€¢ PLOT. Local plot and spool plot.
â€¢ MODIFY. Moving, copying, rotating, mirroring, scaling,

stretching, and isometric modification of real geometry.
â€¢ PARTS (two screens). Commands for a single-level or mul-

M A Y 1 9 8 7 H E W L E T T - P A C K A R D J O U R N A L 7

© Copr. 1949-1998 Hewlett-Packard Co.

W I N D I C O N S T R I M E A S B A C K
S H O W L T / C O L G R I D E X C H
P O R T C A T C H S E L P R O P

LIST ITEMS
SELECT
SORT UP
SORT DOWN
CAT ITEMS
Phys Name
File Type
Createdate
Accessdate

I F i l e D e s c
File Size
Modifydate
Num Access

Fig. 5. Screen submenus of the tablet/screen user interface.

tilevel parts structure and parts lists. The PARTS block
on the tablet overlay contains a small subset of the screen
submenu functionality and offers only single-level parts
commands. This enables the novice user to work with
a flat tree structure (all parts on the same level) whereas
the experienced user can use the more sophisticated
parts commands of the screen submenu to create more
complicated parts structures.
SET UP (two screens). Commands for changing the work
ing environment, such as setting units, plotting defaults,

Fig. 7 . Example: Cata log funct ion.

dimensioning options, and dimensioning defaults.
â€¢ SYMBOLS (two screens). The first menu contains a set of

ISO symbols in different sizes and the appropriate sym
bol box elements. Since many users want to use their
own symbols, the second screen is left empty to offer an
easy-to-use way to add custom symbols.

â€¢ INFO. Commands for associated texts.
Screen-Only User Interface. For users who prefer working
with a mouse or do not want to spend money for a tablet,
we implemented a screen-only user interface. Our main

W I N D C O N S T R M E A S B A C K
S H O W L T C O L G R I D E X C H
P O R T C A T C H S E L P R O P

W I N D I C O N S T R I M E A S B A C K
S H O W L T C O L G R I D E X C H
P O R T C A T C H S E L P R O P

Fig. 6 . Screen submenus of the screen-on ly user in ter face.

8 HEWLETT-PACKARD JOURNAL MAY 1987

© Copr. 1949-1998 Hewlett-Packard Co.

goal was to design both user interfaces to be as similar as
possible by using the same structure for tablet overlay com
mand blocks and their screen-only representation, and the
same internal structure of the screen submenus like CREATE
or DIMENSION. The scheme for the screen-only user interface
consists of five parts:
â€¢ Calls for changing screen submenus. For example,

CREATE and DIMENSION as you would find them on the
tablet overlay.

â€¢ Calls for changing screen submenus that simulate the
tablet overlay function blocks like WINDOW. SHOW.
LINETYPE COLOR, and SELECTION.

â€¢ An area in which the changing screen submenus will
appear.

â € ¢ A b l o c k w i t h t h e m a i n c o m m a n d s : D E L E T E , C A N C E L ,
UNDO, CONFIRM, END, and HELP.

â€¢ A numeric keypad.
With the exception of the changing submenus, all other

menu parts remain on the screen all of the time. Each menu
part has a different background color. One additional func
tion has been implemented in the screen-only interface.
The BACK function leads the user directly to the previous
command submenu after working in a function submenu
like LINETYPE/COLOR.
Screen Submenus. Both user interfaces use several screen
submenus (Fig. 5 and Fig. 6) with the same internal struc
ture of commands. This makes documentation much easier
since one manual describes both user interfaces.

Some of the menu items are enhanced by a background
color selected according to a simple scheme. Normally, a
command (white background) offers several options (black
or blue background). If a user picks the command name
i t se l f , the user ge ts the defaul t op t ion tha t i s a lways
positioned to the right of the command name. To select an
option, the user can pick it directly without picking the
command name first. However, some commands or func
tions can be executed with more than one option at the
same t ime. For example, let 's take a closer look at the
catalog function (see Fig. 7).

First, the user decides whether to see the current direc
tory (pick CATALOG or Current) as the default option or
another directory (pick Name and enter a directory name).
Second, the user can select one or more options with a
blue background to select certain catalog items (e.g., File
Type), or sort the output list according to an item like file
name, file size, create date, and so on. Finally, the user has
to decide the destination for the catalog list. For this pur
pose, a blue background menu field named OPTIONS at the
bottom of the screen submenu offers Screen and Printer as
devices or Delete Old and Append for the destination file
specified.

The different background colors in the screen submenus
are used to simplify interpretation of the listings presented.
A white background is used for command and function
names. A black background shows necessary options that
the user has to select with the first pick. Blue background
options can be selected after the first pick.
User Interface Files. The user interface is completely writ
ten using the ME Series 5/10 macro language. It is divided
into nine files which can be easily modified by the user:
hp_macro: All macros used in both user interfaces.

hp_macro_t: Macros and screen menus used only by the tab
let screen interface.
hp_macro_s: Macros and screen menus used by the screen-
only interface.
hp_menu_t: Definition of the menu slot layout for the tablet
screen interface.
hp_menu_s: Definition of the menu slot layout for the screen-
only interface.
hp_tmenu: The tablet overlay menus for three HP graphics
tablets.
OVL9111, OVL46087, and OVL46088: ME Series 5/10 drawings
of the tablet overlays for the three HP tablet types.

ME Ser ies 5 /10 Language
In addition to screen and tablet menus, special function

keys are available. This highly customizable user interface
system is based on an interactive command language cho
sen to be independent of input devices and input tech
niques and to provide an easily extensible system. Besides
the basic commands and functions for invoking the system
features, there are extensions for expression evaluation and
macro definition.
Basic Constituents. Processing ME Series 5/10 input can
be split into two parts: character processing and token pro
cessing. All logical input devices, such as the keyboard or
a screen/tablet menu, send characters to the scanner. The
scanner understands the syntax of all token types. It decides
by looking at the stream of characters if the token is a point,
a string, a number, et cetera. For example, 4,5 is a point,
"ENGINEER" is a string, and 3.14 is a number.

A token is an entity of information (represented by a
modified Pascal record) containing the token type (e.g., a
number), its value (e.g., 3.14), and a link to the next token
to be processed. The value of a token is in binary format,
the value of a command token is an internal command
number, and the value of a macro token is a pointer to the
macro definition. This format was chosen because it is a
compact representation and, since tokens are normally pro
cessed more than once, processing time is saved because
most of the work is done when the token is bui l t . The
possible token types are listed in Table I.

Table I
Token Types and Examples

Token Type

Command
Function
Qualifier
Pseudocommand
Math function
Symbol
Macro
Literal
Number
Point
3D point
Illegal

Example

LINE
WINDOW
DOT_CENTER
LOCAL
INQ
*

Center j ines
" I d e n t i f y c i r c l e '
3 .14
3.14,403
0,3.14,403

Commands and functions are the primary keywords that

MAY 1987 HEWLETT-PACKARD JOURNALS

© Copr. 1949-1998 Hewlett-Packard Co.

(a)

M A I N

A c t i o n 1

S u b A c t i o n
L e v e l

â€¢ Action K

I
S u b A c t i o n

L e v e l

Fig. 9 . Genera l program st ructure of ME Ser ies 5/10.

N e x t
F u n c t i o n

(b)

Fig . 8 . (a) Typ ica l command syntax, (b) Funct ion syntax d i f
fers from the command syntax in that i t lacks the typical loop
structure.

invoke a specific system action. We have chosen different
terms to reflect the two uses. A command (e.g., LINE) is
normally active until another command is entered. This
means that the user inputs lines until another command
is chosen. The typical command syntax is shown in Fig. 8a.

A function (e.g., WINDOW) is normally only active until
the data required for this specific function has been entered.
Then the function terminates (see Fig. 8b). It does not have
the typical loop syntax of the commands. Functions are
those actions in the system that do not change the data
model, but may change the values of variables defining the
environment, such as a catch mode.

A special property of a function is that it can interrupt
a command. That means that at any stage of the command,
instead of entering the required data for that command,
the user can select any function. After completing the func
tion the system will ask for data for that command again.
Even inside a function, another function can be invoked,
which again interrupts the previous function.

Both commands and functions are implemented in action
routines (see Fig. 3).
Expression Evaluation and Macro Processing. Between the
scanner, which performs syntactic analysis and generates
tokens, and the action routines, which consume tokens for
semantic analysis to carry out the requested actions, is a
filter to evaluate expressions and expand macros. Expres
sion evaluation transforms several tokens into a single
token. Macro expansion takes a single token and replaces
it with one or more tokens. For example, the seven tokens
3.14X10X10 are replaced by the token 314 and the macro
token Dae is replaced by the tokens DELETE ALL CONFIRM.

Examples of expression operators are + , which adds two
numbers or vectors or concatenates two strings, ROT, which
rotates a vector, and POS, which returns the position of a
substring within a string. One special operator is INQ. It
can be used to read the current environment (e.g., window

setting, color, catch mode, and available memory), the type
and parameters of drawing elements (e.g., coordinates,
radius, and color), and miscellaneous items (e.g., last mea
sured distance).

Macros can be used for the following reasons:
â€¢ Abbrev ia t i ons such as Dae fo r DELETE ALL CONFIRM
â€¢ Speed (executing a macro is much faster than executing

the same commands given in character representation)
â€¢ Localization. For example, using German KREIS for En

glish CIRCLE
â€¢ Variables such as point coordinates, loop counters, etc.
â€¢ User-defined functions to extend the built-in functional

capabilities
â€¢ User-defined action routines to extend the overall system

capabilities, such as an ellipse routine
â€¢ Parameterized library parts such as bolts and nuts.

The macro features include nesting (macros can use other
macros), local macros, and parameters. To avoid conflicts
with a global macro with the same name, a macro should
be declared local if it is only used inside another macro.
Parameters are the same as local macros, except that an
initial value must be provided when calling the macro.
There are also several control structures to be used inside
macros. These are WHILE END_WHILE, REPEAT UNTIL, LOOP
EXITJF ENDJ.OOP, and IF ELSEJF ELSE ENDJF. User interac
tion is provided by the READ function, which includes type
checking, rubberbanding, catching, and default values.
Macros can be not only saved in ASCII representation, but
also stored in a binary format and secured as appropriate.
The TRACE function can be used to monitor macro expan
sion and expression evaluation. It lists all tokens processed
by the macro/expression filter either to an output device
or to a file.

A short example in the box on page 12 explains the ME
Series 5/10 macro capabilities in more detail.
Action Routines. Action routines are the lowest-level user
interface in the system. They cannot be changed by the
user, and within the same product and revision, they are
the same for all countries.

The general program structure of ME Series 5/10 can be
visualized by the diagram in Fig. 9. An action routine inter
faces the user to the sub action level. For example, to create
a line, the user enters LINE into the system (this can be
done in various ways). LINE is recognized by the system as

MAIN

L D I M I I I M O D I F Y I S T R U C T U R E I A N A L Y S I S I D A T A _ M I S Y S T E M _ M I
. * * t t t t +
I U T I L I T Y ! â € ¢ â € ¢ â € ¢ Â « â € ¢

*
S u b A c t i o n

L e v e l
Fig. 1 0 . Expans ion o f ac t ion rou
t ine structure in Fig. 9.

10 HEWLETT-PACKARD JOURNAL MAY 1987

© Copr. 1949-1998 Hewlett-Packard Co.

a command and the line action routine is called by MAIN.
This routine now handles all interactions with the user to
create the line the user wants. In general, an action routine
reads a specific set of tokens and changes the state of the
system accordingly. The state of the system includes the
values of global variables, local variables, data structures,
the file system, et cetera.

Fig. 10 expands the action routine structure and shows
some of the ME Series 5/10 action routines. UTILITY denotes
a set of action routines used by other action routines. Bas
ically these routines deal with selection. Other action
routines shown in Fig. 10 are:
â€¢ DIM, which handles dimensional data
â€¢ CREATE, which creates geometric information
â € ¢ M O D I F Y , w h i c h d e a l s w i t h D E L E T E , S P L I T , M E R G E , a n d

MODIFY
â€¢ STRUCTURE, which deals with parts and layers
â€¢ ANALYSIS, which calculates properties of the created

geometry such as center of gravity
â€¢ DATA_M, which manages data structures (LOAD, STORE,

and Ml)
â€¢ SYSTEM_M, which manages system parameters, macros,

et cetera.

Store and Load
Storage Formats. ME Series 10 can store drawings, sub-
parts, or library parts in two different formats: binary or
MI (Model Interchange). ME Series 5 offers only the binary
format. The binary file format corresponds to the internal
representation of drawings, subparts. or library parts in ME
Series 5/10. Very little conversion is necessary when storing
to another binary format. This results in compact data stor
age and provides for fast storage and retrieval of ME Series
5 10 model data. The MI format is an HP data exchange
standard similar to IGES that requires transformation of
the internal data structure to an ASCII format for long-term
storage and interfacing to external programs.

Some techniques used to store data are applicable to both
formats. In particular, the same mechanism is used to store
lists and object references. Before explaining the way ME
Series 5/10 stores model data, it is necessary to describe
some aspects of the internal memory management and the
data structure of ME Series 5/10.
Memory Management and Model Data Structure. All ob
jects that are created in a dynamic fashion or vary in size
are stored in the heap storage area. To manage the heap
area, ME Series 5/10 uses its own heap manager to obtain
sufficient performance for creating and deleting dynamic
objects. This helps achieve a satisfactory interactive re-

Shared
Subpart

Parts Tree

Fig. another. 1 . Objects are linked with references (black arrows) to one another.

MAY 1987 HEWLETT-PACKARD JOURNAL 11

© Copr. 1949-1998 Hewlett-Packard Co.

Example Macro

DEFINE Center j ines
LOCALPLOCALR LOCAL C LOCAL L
END
I N O . E N V 3
LÂ£TC(INO201)
LETL(INQ302)
LOOP

R G B . C O L O R C
LINETYPEL
END
LOOP

READ PNT 'Identify circle' P
INO_ELEMP

EXITJF(INQ403 = CIRCLE)
BEEP

END.LOOP
LETP(INQ101)
LETR(1.1Â«INO3)
LINE

YELLOW
DOT.CENTER
(P - P N T _ X Y R O) (P + P N T _ X Y R O)
(P-PNT_XY 0 R) (P+PNT_XY 0 R)

E N D A O O P
END.DEFINE

(Declare macros used locally)
(Terminate any active command)
(Inquire current color and
linetype, and save values
in local macros)

(Restore color)
(Restore linetype)

(Ask user to identify a circle)
(Get element parameters)
(Exit loop if element=C!RCLE)
(Else BEEP and continue asking)

(Inquire circle center point)
(Inquire radius, scale by 1 .1)

(Switch color to YELLOW)
(Switch linetype to DOT_CENTER)
(Draw horizontal center line)
(Draw vertical center line)
(Ask for next circle)

The macro l isted above wil l continuously ask the user to identify
a c i rc le to add center l ines to. The center l ines wi l l be yel low, in
a doLcenter linetype, and will be 1 0% longer than the circle radius.
The input of any command wi l l terminate the macro and execute
the command.

sponse time in ME Series 5/10.
The storing of objects organized in a heap area takes

longer than storing an array of bytes containing all objects
compacted with no free space between the objects. Such
compact arrays of bytes can be copied from memory to disc
in a very fast manner. But, in ME Series 5/10, all important
data structures are organized as linear lists, binary trees,
quad trees, part trees, etc., with many references between
the objects. Using a heap storage area offers much more
flexibility than reserving a fixed amount of storage or
ganized as an array. The size of the model data is only
limited by the installed memory.

To get the required functionality and to represent the
dependencies of the objects that ME Series 5/10 creates
and uses, most objects are linked with references to each
other (see Fig. 11). If there were no restrictions on the
references between the objects stored in the heap, then the
net of objects could be described with a general graph.

ME Series 5/10 organizes the model data as a hierarchy
of objects with references only in one direction from the
higher to the lower levels, with the result that the model
data can be seen as a directed cycle-free graph. The hierar
chy of model data from highest to lowest levels is:

Highest level ~-*Parts
Faces, dimensions
Contours
Components

Lowest level ~> Model points and global data

Because of this data organization, the storing of compo

nents and other objects can be simplified and done more
efficiently.

All objects can be divided into two groups. There are
objects global for all parts (shared by all parts) and objects
local to a particular part, to which they belong. Examples

Global objects:
Dimension line data
Dimension character data
Hatch
Patterns
Associated text

Local objects:
Model points
Components
Dimensions.

Shared object references are used to link local objects to
global object data and to link local objects in a part to each
other as listed below:

Simple components ~* model points
All components -^associated text
C o n t o u r s ~ > s i m p l e c o m p o n e n t s
F a c e s - * c o n t o u r s

~Â» hatch
H a t c h - ^ p a t t e r n s
P a r t ~ Â » s i m p l e a n d c o m p o s i t e c o m p o n e n t s

(all components belong to one part)
~Â» part (shared and unshared subparts)
~Â» associated text

Dimension â€”Â» dimension line information
~* dimension character information
~Â» model points
~> simple components

For many temporary processes, each sharable object has
a slot called temp_attr (temporary attribute). The information
stored in temp_attr is only valid within a single command
or function. The temporary attribute is used to:
â€¢ Number objects in a list to transform references, mark

objects, and assign temporary information.
â€¢ Produce a listing of the assembly structure or of the

number of occurrences of all subparts.
â€¢ Temporarily store pointers to the image of modified shar

able components to avoid duplicate processing during
the MODIFY command.

â€¢ Find all faces and contours with all their referenced
components included in a given list of selected compo-

MPs

CPs

F i g . 1 2 . L i s t s o f m o d e l p o i n t s a n d c o m p o n e n t s w i t h r e f e r
ences from the lat ter into the former.

12 HEWLETT-PACKARD JOURNAL MAY 1987

© Copr. 1949-1998 Hewlett-Packard Co.

nents.
â€¢ Detect cycles during automatic hatching.
â€¢ Temporarily store topological information during the

STRETCH command.
â€¢ Temporarily mark selected elements during selection

and support logical operations in the selection mechanism.
Example: Storing Lists of Objects. As an example, we de
scribe the mechanism to store two lists of objects with
references from the second list into the first list. Let us
assume that the first list contains model points (MPx) and
the second list contains components (CPy) as shown in
Fig. 12. To store this structure the following actions are
performed:
1. Initialize the temp_attr of all objects in list MP to zero.
2. Mark all model points referenced from components in
list CP.
3. Order all marked model points by assigning to temp_attr
a sequence number according to the position in list MP
and remember the total number of model points.
4. Store the total number of model points followed by the
model points in list order. The model point count is used
to detect the end of the list during load and to calculate
the number of bytes needed to store object references into
this list.
5. Count the number of components in list CP.
6. Store the count of components followed by the compo
nents in list order and convert model point references by
storing the value of temp_attr accessed by dereferencing the
model point reference.
Storing the Data Structure. Before any data is stored on
external files, the model data is inspected to check that all
references point to legal objects. This is accomplished by
adding a sequence number to the temp_attr of the particular
object and verifying that all referenced objects have a se
quence number in the appropriate range (between zero and
the number of elements of the particular object type).

All quad trees for model points are reorganized to delete
model points that are not leafs and that are no longer refer
enced by other objects (i.e., all use counts are zero). The
leaf nodes that have no other references have already been
deleted.

This mechanism is used for all l ists representing the
model data. The order in which lists are stored is important
to guarantee that during the reload of these lists, all ele

ments of other associated lists are already loaded when
references to these elements are encountered. Translating
a reference means to fol low the reference and get the
number in temp_attr assigned during previous numbering.
These numbers are always relative to the beginning of the
list the referenced element belongs to.

To get a compact storage format, the numbers are stored
as one, two, or four-byte integers when the number of ele
ments in a list is less than 28, 216, or maxjnteger, respectively.

All objects that can be referenced only one time need no
special actions because the contents of these elements can
be stored without pointer information. All objects of the
same type within a part are stored together to eliminate
storing the type flag for each element. Instead, there is one
type flag stored at the start of the list of objects of the same
type.

The structure information of the quad tree is also stored
with the model points. At load time, the tree can be built
very quickly without time-consuming reconstruction by
insertion of each model point in a new quad tree. To store
the parts structure, there is a small difference in the mech
anism. Each reference to an unstored part initiates the stor
ing of this part and the fact that it was stored is marked in
the temporary attribute of the part by setting temp_attr to the
sequence number of the part. The next references to this
part are stored by using the sequence number read from
temp_attr for this part.
Loading Data. The loading of the model data lists is done
from the lowest to the highest level in the objects hierarchy.
A transformation table is constructed for each list of shar-
able objects in which the address for each member of the
list is stored on the index that equals the sequence number
in the list. To resolve shared object references, the address
of the already created object is retrieved from the appro
priate transformation table. To minimize the temporary
storage requirements, the lifetime of the transformation
table is reduced to the time required to load one part.

Help System
A CAD system should not only be simple enough to be

operated by a user who works with the system only now
and then, but also sophisticated enough to allow a very
experienced user to perform very special operations. In
both cases there is a need for occasional assistance, for

S T O R E c o m m a n d

- - > (S T O R E) -
l l I I
' ' - - > | p a r t n a m e | - - > ' ' - - > (D E L _ O L D) - - >

- > + - > | f i l e n a m e I - - - >

S T O R E s t o r e s t h e d r a w i n g t o t h e n a m e d f i l e . I f t h e n a m e d f i l e a l r e a d y e x i s t s ,
y o u m u s t u s e t h e D E L _ O L D o p t i o n . S T O R E c a n p r o d u c e e i t h e r o f t w o f o r m a t s .

M I s e l e c t s t h e M O D E L I N T E R F A C E S T A N D A R D f o r m a t . T h i s i s a t e x t f o r m a t i n t e n d e d
f o r l o n g - t e r m a r c h i v i n g a n d f o r i n t e r f a c i n g w i t h o t h e r s y s t e m s .

T h e d e f a u l t f o r m a t i s a n i n t e r n a l b i n a r y f o r m a t . F i l e s i n t h i s f o r m a t a r e
s m a l l e r t h a n M I f i l e s , a n d c a n b e w r i t t e n a n d r e a d f a s t e r .

F i l e s i n e i t h e r f o r m a t a r e r e a d a b l e w i t h L O A D .

A L L m e a n s t o s t o r e t h e e n t i r e d r a w i n g , f r o m t h e t o p p a r t d o w n . Y o u c a n a l s o
n a m e a p a r t , a n d o n l y t h a t p a r t w i l l b e s t o r e d .

Fig. 13. Example from the help file.

MAY 1987 HEWLETT-PACKARD JOURNAL 13

© Copr. 1949-1998 Hewlett-Packard Co.

ME Series 10 Link to HP-FE

The f in i te e lement method al lows the engineer to analyze the
behav ior o f a des ign accurate ly before i t i s manufactured. The
design process can be considered as a two-step loop. The f i rs t
step is the creat ion or modif icat ion of a design. The second step
is the analysis of the design. If the analysis gives negative results,
both s teps have to be repeated.

HP-FE is a genera l -purpose f in i te e lement sys tem for l inear
s t ructura l and thermal analys is o f two-d imensional , symmetr ic ,
and three-dimensional st ructures consist ing of l inear e last ic ma
t e r i a l w i t h h o m o g e n e o u s , i s o t r o p i c m a t e r i a l p r o p e r t i e s . I t s
analys is capabi l i t ies inc lude l inear e last ic , l inear dynamic, and
l inear heat transfer solutions.

The program performs in three steps: input of necessary data,
ca lcu la t ion , and d isp lay o f resu l ts . The input p rocess invo lves
two steps: descr ib ing the geometry of the structure and def in ing
the f in i te e lement mesh. The user on ly needs to en te r enough
points to define the boundary of the structure. Given the boundary
o f the ob ject , a cross par t i t ion ing in to var ious subregions must
be spec i f ied . The geometry data cons is t ing o f po in ts and l ines
(po lygons) for each subreg ion can e i ther be def ined d i rec t ly in
the preprocessor or t ransferred f rom the ME Ser ies 10 system.

The ME Ser ies 10 data exchange program ext racts and re for
mats the geomet r i ca l da ta requ i red fo r the HP-FE program. In
the ME Ser ies 10 env i ronment , the user chooses the d rawing .
For manipulat ions such as par t i t ion ing, the whole ME Ser ies 10
mod i f i ca t ion capab i l i t i es can be used . Then the geomet ry can
be passed in a well-defined manner to the preprocessor of HP-FE.
The data exchange sets the th i rd coordinate equal to zero, thus
embedd ing the two -d imens iona l ME Ser ies 10 da ta i n an X -Y
plane through the origin. Because of dif ferent operating systems,
the f i le fo rmat is ASCI I . A f te r the t rans fer the user swi tches to
t he HP-FE p rog ram where i t i s poss ib le t o add f i n i t e e lemen t
speci f ic information. This consists of :

Def ini t ion of the mesh
B Propert ies of e lements
 B o u n d a r y c o n s t r a i n t s
â€¢ Definition of loads.
Entering this data permits finite element analysis to be performed.

Guenter Voss
Development Engineer

BÃ²bl ingen Engineering Operat ion

example, to give the former user a hint about the order of
input and to show the latter user a different way to deal
with problems most efficiently. The assistance should give
guidance, such as when a user just forgets how to input
the correct command sequence, and should give hints about
other commands or options that could be used as a better
solution for the user's problem.

A configurable and expandable system that can be mod
ified by the user should also allow the user to incorporate
information about a specific functionality into the help
system. The information presented should be technically
correct and comprehensive. The technical user should find
a notation that allows the user to check the syntax of com
mands, functions, and macros at a glance. Therefore, we
chose the so-called railroad notation, where the user can

travel along and find all options of a given command and
the sequence in which they have to be entered.

The ME Series 10 help system is made up of three files.
One, called help, is shipped with the system. The other two
files are generated by the system and are called help.i and
help.t. One is an index file that allows very fast access to
the formatted text file â€” its contents are actually displayed
on the screen.

All the information about the help system is in the master
file called help. This file is human readable and can be
edited with a regular text editor. To explain in more detail,
let's take a closer look at a description of a specific com
mand. Fig. 13 is an original example from the help file. The
keywords are preceded by the caret ". The keywords are
later stored in the index file and used as keys to the corre
sponding help paragraph.

The first keyword is the primary keyword, which nor
mally is the same as the command name. The other
keywords may be applicable to more than one command.
To get from paragraph to paragraph containing these key
words, the help command N (Next) is provided.

The railroad structure shows all the options and the com
mand sequence. Words in capital letters (e.g., ALL) are
known words of the system and have to be entered literally.
The railroad structure is followed by a more verbal descrip
tion of what the command and the options do, hints about
performance, boundary conditions, and what happens if
an error occurs.

The user can write paragraphs and insert them into the
help file. The system then generates a new index and text
file so that the user's paragraph is available from then on.
Searching through the index file is very fast since the index
file is loaded in main memory. If an exact match occurs,
the key is found, and the paragraph is displayed. If no exact
match is found, a second pass through the index file is
initiated to find the best match. This means that if a simple
typing error occurs or the exact syntax is not known, there
is a good chance of getting the proper help message anyway.

Once a user has a help paragraph on screen, besides the
above-mentioned Next command, the user can scroll the
screen to read previous or following paragraphs. If the user
is already inside a command or function and doesn't know
how to proceed, the user simply can enter HELP, which
automatically displays the help paragraph for the current
command or function. The help system is always available
wherever the user is in ME Series 5/10, whether in com
mand entry, inside a command, in the editor, or even in
the help system itself.

Development Process
The development took place on the Pascal workstation

system using an HP SRM (Shared Resource Management)
network, which is also a product configuration. 160,000
lines of Pascal source code, a few assembler modules, and
some C language routines were completed in a relatively
short time. A number of tools were written to automate
and speed up day-to-day work. Continuous porting of the
software to the HP-UX operating system and continuous
testing during the development phase reduced the chance
of unwelcome surprises at the end. Early prototypes and
the feedback from our alpha and beta test sites (see article

14 HEWLETT-PACKARD JOURNAL MAY 1987

© Copr. 1949-1998 Hewlett-Packard Co.

The ME Series 10 NC Links

Al l NC (numer ic con t ro l) p rogramming languages a re based
on the same principle. First, geometric elements l ike points, l ines.
c i r c l es , and con tou rs a re de f i ned . Then t he t oo l s a re moved
along labeled. elements. For identification, all elements are labeled.
For example:

P1= POINT 15,20
L1=LINE/15,10,30,80.2
C1 = CIRCLE/50,55.3,20

Tradi t ional ly, an NC programmer is given a set of engineer ing
d raw ings o f t he pa r t t o be p roduced . The p rog rammer has to
unde rs tand and i n te rp re t t he d raw ings accu ra te l y be fo re p ro
ceed ing to wr i t e t he NC p rog ram. Th is i s where much t ime i s
c o n s u m e d a n d e r r o r s a r e m a d e . S o m e t i m e s t h e a m o u n t o f
geomet ry de f in i t ion in the NC source p rogram is cons iderab le
and many typ ing er rors are poss ib le . There fore , i t i s des i rab le
to provide l inks from a CAD system to an NC programming system
t o m i n i m i z e p r o g r a m m i n g t i m e a n d g e t c o d e f r e e o f e r r o r .
T h e s e l i n k s s u p p o r t N C p r o g r a m m i n g b y g e n e r a t i n g a l i s t o f
geomet r i c e lements t rans la ted in to the co r respond ing NC lan
guage as shown by the examp le above . I n add i t i on , t he CAD
use r can a l so o f f e r a d raw ing w i t h t he l abe l i n f o rma t i on t ha t
cor responds wi th that used in the NC source code.

However, most NC interfaces to CAD systems wi l l not support
d raw ing changes . Tha t means tha t any d raw ing change leads
to total ly di f ferent label ing of the elements. The resul t is that al l
machin ing commands in the NC source program must be rewr i t
ten . Not so w i th ME Ser ies 10 . In case o f d rawing changes a l l
ex is t ing labels are not renamed, they are par t of the model .

The fol lowing NC l inks are avai lable:
â€¢ ANSI APT
â€¢ COMPACT II (Manufacturing Data Systems, Inc. or MDSI)
â€¢ NCGL (NC Graphics Language of MDSI).

Macro
APT

User Input APT_OUT
Filename

Store Current Part

C o p y w o r k 2 . A S C t o
f i lename

P u r g e w o r k 2 . A S C

Result Message

Exte rna l T rans la to r
APT Prog ram

Translation and
Sorting

APT Output on
work2.ASC

Fig.1. Translation process from ME Series W to NC language.

Translat ion Process
The t ranslat ion process is star ted by an ME Ser ies 10 macro.

The t rans la to rs a re imp lemented as ex te rna l Pasca l p rograms
star ted by the RUN funct ion of ME Ser ies 10. This funct ion sus
pends ME Series 10 and starts the external program (translator).
Ex i t ing the p rogram w i l l cause ME Ser ies 10 to resume a t the
same point where it was left. The translation is based on Ml data.
I f any labeled components exist in the drawing, only the labeled
geometry is t rans la ted; o therwise, the ent i re geometry is t rans
lated. Fig. 1 shows the t ranslat ion process.

Ber tho ld Hug
Development Engineer

BÃ²bl ingen Engineering Operat ion

on page 30) helped us tune the feature set and polish the
user interface.

The extensive use of abstract data types made it possible
to keep interfaces stable while experimenting with al
gorithms and data structures. For example, the point stor
age method changed from a linear list to a quad tree while
in beta test. The test customers probably did not notice,
except for the increase in speed.

A c k n o w l e d g m e n t s
Dan Matheson was the project leader of the breadboard

that led to the ME Series 5/10. We thank Dan for his work.
Mustafa SolimÃ¡n was the first person outside R&D to work
with ME Series 5/10 as a user, and he developed the first
versions of the tablet/screen personality. Angela Suthurst
of our publications group assisted with the editing and
preparation of this article.

Refe rences
1. Hewlett-Packard Journal, September 1986, pp. 4-27.

MAY 1987 HEWLETT-PACKARD JOURNAL 15

© Copr. 1949-1998 Hewlett-Packard Co.

ME CAD Geometry Construct ion,
Dimensioning, Hatching, and Part
Structuring
by Karl -Heinz Werner, Stephen Yie, Fr iedhelm M. Ott l iczky, Harold B. Pr ince, and Heinz Diebel

CREATING MECHANICAL PART DRAWINGS is a
necessary part of the design process for mechanical
engineers and drafting and documentation support

personnel. Using an HP ME Series 5/10 Workstation makes
this task easier, simplifies the work required to make revi
sions later, and provides a data base that can be used by
other designers and subsequent manufacturing facilities.
The tools provided with the ME Series 5/10 allow a user
to create and manipulate the following simple geometric
entities:

Construction lines and circles
â€¢ Lines
â€¢ Circles, arcs, and fillets (special arcs)
â€¢ Polygons and splines.

To represent these elements in the computer, the speed
of geometric calculations and the amount of memory avail
able are important constraints. To minimize the amount of
storage required, we describe the elements above by vector
algebra and express all quantities as multiples of real num
bers:
â€¢ Point: 2 numbers
â€¢ Construction line: 3 numbers â€” for instance, one point

on the construction line plus an angle of direction
â€¢ Construction circle: 3 numbers â€” for instance, center and

a radius
â€¢ Lines: 4 numbers â€” for instance, two endpoints
â€¢ Arcs, fillets: 5 numbers â€” for instance, center, radius, and

begin and end angles.
In the case of a construction line it is also possible to

use the equation y = ax + b to represent the (x,y) points of
nonvertical lines.

Geometry Data Structure
The ME Series 5/10 data structure for geometry has a

top-down structure with four levels:
â€¢ Level 3: faces
â€¢ Level 2: contours
â€¢ Level 1: construction lines and circles, lines, arcs and

fillets, polygons, and splines
â€¢ Level 0: model points.
The Quad Tree. Repeated modifications like scaling a rect
angle (consisting of four boundary lines) may introduce
numerical errors into the values of the endpoints. It is then
possible that the rectangle will no longer be closed. The
best closure is obtained if the endpoints of adjacent ele
ments are identical. A less stringent form of closure is to
make the difference of the endpoints less than a given
epsilon (e).

To overcome the above-mentioned storage problem and
the topological problem of closure, ME Series 5/10 uses
the following mechanism. All points used to describe the
geometric properties of elements are kept in a common
storage area called model points. A model point is unique.
There are points with topological relevance such as end-
points of lines and there are points with no topological
meaning, for example, the center of a circle. To distinguish
between these cases, use counters are attached to the points.

Entering a new point means comparing this point with
other already existing points for identity. Two points are
considered to be equal if both coordinate differences are
relatively less than a variable called data_eps. The usual
value of data_eps is about 0.000000000001 (10~12). Compar
ing new points with existing points in this way could de
grade the performance of the system, so an adequate storage
format is necessary. The model points are stored in a quad
tree.1 The quad tree is a two-dimensional analog of a binary
search tree. The basic idea of the quad tree concept is to
associate four quadrants with a given point. Another point
can then be classified to be in one of the four quadrants.
Using the standard Cartesian coordinate quadrants, it is
easy to classify points (see Fig. 1).

In the kth level of a quad tree there is room to address
4k points. So a full quad tree of seven levels can store
21,844 points. The search time for a specific point is very
short if the tree has good balance. Typically the quad tree

G e o m e t r y

P 2
X

P 3
X

P1
X

PO

P 4
X

D a t a S t r u c t u r e

Fig. 1 . Quad t ree concept .

1 6 HEWLETT-PACKARD JOURNAL MAY 1987

© Copr. 1949-1998 Hewlett-Packard Co.

of a mechanical engineering object is balanced very well.
If the model shape is equal to a nearly horizontally or
vertically extended object, the quad tree degenerates to a
binary tree. To degenerate the quad tree to a linear list, all
points must be placed along a single line (a shape that is
uncommon in mechanical drawings). The shape of the quad
tree depends on input order. If an element referencing a
given model point is deleted, then the use counters of the
model point are decremented. If the use counters of this
model point are zero and the program leaves the model
point, the model point is deleted immediately. Otherwise,
the model point is removed within the STORE command.

An inspection of some complex mechanical engineering
drawings (about 5M bytes of data) showed the average tree
level to be 20, with a few branches up to 50 levels deep.

With ME Series 5/10 a user can create points in the whole
plane (limited by the longreal format) and the points may
be arbitrarily close (again limited by the longreal format
and by epsilon).
Level 1 Elements. A construction line is considered as an
infinite line passing through a given point. The internal
representation consists of a point and a direction vector.
Construction circles consist of a center (point) and a radius.
Lines are represented by two endpoints. Arcs and fillets
are represented by a center and two endpoints. Circles are
considered as arcs with identical beginning and ending
points; hence, they are represented by a center and one
peripheral point. To speed up the system response, redun
dant information like radius and angles are also stored for
these element types.

Polygons connect data points by straight line segments.
Splines connect data points by third-order interpolating
curves with respect to a set of possible boundary conditions
and damping associated with each data point.

On this level the ME Series 5/10 data structure for
geometry can be viewed geometrically as a set of elementary
curves with model points as geometric parameters. To-
pologically it can be viewed as an Euler net.
Contours and Faces. With ME Series 5/10 it is also possible
to have composite geometric entities like contours and
faces. This is an important feature supporting modeling.
Contours are parameterized by the individual elements
forming the contour. Faces are parameterized by one outer
and no, one, or more inner contours. Parameterization
means association: the changed underlying elements au
tomatically influence all higher-dimensional elements.

Entities on a given level (>0) refer directly to entities on
the level below. The problem of finding all elements on
higher levels that refer to a given element is solved by a
search process using the use count information. Therefore
it is necessary to have use counters on all levels (<3). For
instance, a use counter on level 2 indicates how many faces
share a given contour.
Parts. It is desirable to collect all these element types in a
single unit called a part. Then it is necessary to have a part
element type (see the section on parts).
Splitting. In a technical drawing, elements such as lines
and circles are drawn in a common plane. These elements
can be images of physical edges in different planes. Sup
pose now that the drawing is a front view of a simple
three-dimensional object consisting of two adjacent rect

angles. Now add a horizontal line to the lower rectangle
extending from the left to right boundary (see Fig. 2a). This
new line may be the image of an edge in the same plane
as the lines from the lower rectangle or it may belong to
another plane (see Fig. 2b).

In the first case, the original rectangle should be split by
the new horizontal line, in the other case not. How can the
program know whether to split or not? The splitting func
tion in ME Series 5/10 sets a flag. If this flag is true, at the
insertion of a new simple geometric element like a line the
system splits all elements passing through the endpoints
of the new element automatically. If the flag value is false
nothing happens. In this way the user can decide whether
to split or not.

There may be situations where splitting a set of elements
or splitting at intermediate intersection points is necessary.
In this case, the SPLIT function can be used. The SPLIT
function uses the whole selection mechanism, that is, the
user can select a single element, or several individually
identified elements, or all elements in a rectangular box,
and so on. Then, in the case of a single selected element,
the user is asked where to split. The CATCH mechanism
can be used to indicate the split point. In the case of several
selected elements the program calculates the intersection
points between these elements and splits corresponding
elements at their intersections (spliUist).

Let us now describe how the spliUist algorithm works.
Suppose we are given a list of N elements. To find all
intersections between these N elements one can consider
all pairs (element i, element j), where l=si and j=sN, and
test these pairs for intersection. Because of symmetry, there
are N(Nâ€” 1)/2 of these pairs. So this algorithm behaves

O R I G I N A L F R O N T V E W

M O D I F I E D F R O N T V I E W

R E C T A N G L E S H O U L D B E S P L I T R E C T A N G L E S H O U L D N O T B E S P L I T

F i g . 2 . T w o - d i m e n s i o n a l r e p r e s e n t a t i o n s o f t h r e e - d i m e n
s iona l ob jec t s mean tha t t he add i t i on o f a l i ne can be t he
image o f an edge in the d isp lay p lane (a) o r i t may be long
to another physical p lane (b) .

MAY 1987 HEWLETT-PACKARD JOURNAL 17

© Copr. 1949-1998 Hewlett-Packard Co.

quadratically, which means that splitting large element sets
will be slow. With N = 1000 we would have to test for
approximately 10002/2 = 500,000 intersections. Assuming
500 intersections per second, this would take 1000 seconds.

In ME Series 5/10 another algorithm is used. As the first
preprocessing step, the smallest rectangular axis-parallel
box around the list elements is calculated. This box is
divided symmetrically into four disjoint subboxes. In the
second preprocessing step, the list elements are classified

as either belonging to one of the four subboxes or extending
across two or more subboxes. Clearly elements belonging
to different subboxes can have no intersections. The test
to determine if an element belongs to a subbox uses four
real comparisons. Hence, the number of preprocessing
steps is proportional to N.

Next, those elements that extend over several subboxes
must be intersected with the corresponding elements. So
an element extending over subboxes 1 and 2 may intersect

D A T U M L O N G

A N G L E

O M U M T
N C H O V E R M M

T R X

P R E F I X

rn

R A D I U S D M
T O L E R A N C E

C H A M D M

S N G L E D M

6,Ã ̄

CN

in o
o o

5 4

33
11 19

10

15,Ã̄

41,5

S P R I N G C H U C K

Fig. 3 . Examples o f ME Ser ies 5 /70 d imens ion ing.

18 HEWLETT-PACKARD JOURNAL MAY 1987

© Copr. 1949-1998 Hewlett-Packard Co.

elements in subbox 1 or subbox 2 or another extending
element. Usually there are only a few elements extending
over several boxes in a technical drawing.

Now we are left with four problems of the same type as
the original problem. Suppose the distribution of elements
is uniform in the plane and that there are no extending
elements. Then each of the four subproblems has N/4 ele
ments. The number of intersection calculations is now
given approximately by 4(N/4)2 = N2/4.

Now we can repeat the steps described above recursively.
With every recursion level, the number of operations is
decreased by a factor of 4 under the hypothesis given above.
In the program an empirically selected constant is used to
stop recursion. If the number of elements is less than this
constant, the quadratic intersection algorithm is used;
otherwise, recursion continues. So the actual behavior of
this algorithm depends on the distribution of elements, the
number of subbox extending elements, and the cost of pre
processing steps (on every recursion level).

Coordinates and Mapping
In vector algebra it is common to represent a planar point

p in the form p = O + xe., + ye2, where (O,e1,e2) is a refer
ence system consisting of a reference point O and two
independent planar vectors e^ and e2. With respect to
(O.B! ,e2) the point p has coordinates x,y, that is, p = (x,y).

Points need to be transformed in two ways. The first is
to change the reference system and then express a given
point in the new system. The second is to change a given
point in a fixed reference system according to some type
of mapping (move, rotate, etc). The latter transformation
occurs in the MODIFY command. The former occurs if
geometric information from one part is compared with that
of a second part. Expressing both actions mathematically,
the transformation of a point p to the new point p' is given
by:

p ' = Ap-b

where A is a 2x2 matrix and b is a translation vector:

A =
[a l l a ! 2

a 2 1 a 2 2

m b =

Using homogeneous coordinates, p' = Aph, where ph =
(x,y,l) and A is a 2 x 3 matrix:

A =
1 2 2 b 2

To avoid unnecessary arithmetic operations and to op
timize certain error handling situations, a control mecha
nism was established. In ME Series 5/10 there is a type
called geo operator, which consists of a matrix, a classifi
cation, and a flag. Classification of a matrix is according
to its geometrical meaning:
â€¢ Unit (does nothing, usually used to initialize)
â€¢ Move only (two-dimensional matrix is unit, adds only)
â€¢ Orthogonal (preserves length)
â€¢ Conform (preserves shape, includes uniform scaling and

orthogonal transforms)
â€¢ Affine (preserves parallelism, includes scaling along an

axis and all former types)
â€¢ Perspective.

The flag indicates that the given matrix preserves orien
tation or reverses orientation.

The usual matrix operations like composition, inverting,

P O I N T T O P O I N T R A D I U S

C O O R D I N A T E

D I A M E T E R

A N G L E

Â«33

Fig. 4. Examples of d imensioning
commands and funct ions.

MAY 1987 HEWLETT-PACKARD JOURNAL 19

© Copr. 1949-1998 Hewlett-Packard Co.

and application to a point use the classification to optimize
the action. For example, the inverse of an orthogonal matrix
is the transposed matrix, which is obtained without multi
plication.

The MODIFY and STRETCH commands in ME Series 5/10
use the same set of options to define the geometry of a
modification. The basic options are MOVE, ROTATE, SCALE,
SIMILAR, and AFFINE. There are suboptions for MOVE, RO
TATE, and SCALE. With each modification the options DEL
OLD or COPY and a repeat factor can be given.

These commands allow the user to define what should
be modified, and how it should be modified. The "what"
part is done by the general SELECTION mechanism for MOD
IFY and by a special selection routine for STRETCH. For the
"how" part the user can define translations, rotations, re
flections, and scaling in different ways. SIMILAR allows the
user to define a transformation built up from a translation,
a rotation, and a scaling operation by indicating two points
and the corresponding image points. Affine mappings can
be defined by three noncollinear points and their image
points. Affine mappings may destroy the type of an ele
ment, for example, a circle will be transformed into an
ellipse by the affine mapping

(0,0), (1,0), (0,1) ~* (0,0),(2,0),(0,0.5).

Because ME Series 5/10 in its current version does not
support ellipse elements, the circle element will be con
verted automatically to a spline element in the geometric
form of the desired ellipse.

The input to the general transformation algorithm used
for MODIFY and STRETCH is a list of selected elements and
a geo operator. For each element type there is a special
modification routine. Modification of model points simply
means multiplying the matrix by the coordinates of the
model point. Modification of simple geometric elements
like lines or arcs means point by point multiplication. So
a line is transformed if its points are transformed. Contours
are transformed if all constituent elements are transformed.
Faces are transformed if their contours are transformed.
Parts are transformed if their underlying elements are trans
formed. This can be done for shared parts by composing
the shared part's matrix with the modification matrix. For
nonshared parts the part's elements are transformed indi
vidually by recursion. (For details of the mapping of faces,
see the section on hatching.)

Often two or more simple elements share a model point.
If the image of such a model point is computed for the first
time, the address of the image point is stored for further
use in the temporary attribute associated with each model
point. To use this information successfully, the temporary
attributes of all model points that can be addressed by the
given elements are set to an initial value, say NIL. Then, at
modification time, an element is read from the list and
processed depending on its type. The basic modification
step is to apply the given geo operator to the model points
associated with an element. If the value of the temporary
attribute of the model point is NIL, the matrix of the geo
operator is applied to the coordinates. This gives the coor
dinates of the image point. Now we need a new model
point. So the coordinates of the image point are sent to the

model point quad tree. If a model point with these coordi
nates already exists, the address of this model point is
returned. Otherwise a new model point with these coordi
nates is created. The address of the new model point is
then stored in the temporary attribute. The image model
point is passed to the element. This basic modification
mechanism for model points is the same for modification
with copy or modification of the original element. In the
case of copy, a new component record is created containing
the new geometric (point) information.

To describe how STRETCH works, suppose the user has
created a line and wants to stretch the right end of the line
by ten millimeters. After calling STRETCH, the user indi
cates the line endpoint, places the ruler parallel to the
line, and indicates two ruler divisions on the ruler's x-axis
separated by ten millimeters. On the program level, a line
element is selected, the endpoint not to be modified is
marked in the temporary attribute with its own address,
the other endpoint (indicated by the user) is marked with
NIL, to the translation operator is calculated according to
the entered points. At modification time, the program
changes the original 10-mm-translation geo operator to a
geo operator that fixes model point 1 and shifts model
point 2 by 10 mm along the line. To do so, the program
reads the information in the temporary attribute of the
model points. The new mapping is defined by 1 ~> 1, 2 ~Â»
2', where point 2' is calculated from point 2 by application
of the original geo operator. This type of mapping is a
similarity operation. The new geo operator and the line
element are passed to the transformation mechanism. So
on the program level, stretching consists of two preprocess
ing steps: topological initialization of the temporary attri
butes and the calculation of a special geo operator for each
(stretch) component from the global input geo operator.
After these preprocessing steps, the normal modification
algorithm applies.

â€¢The ruler facil i ty in ME Series 5/10 closely resembles a T-square. II was created to make
the system resemble the tradit ional drawing board that most designers and draft ing person
nel are familiar with.

Default

Arrow Type

Text Ratio

Dimension Unit

Decimal Place

Set Frame

Fig. 5. Dimensioning parameters.

20 HEWLETT-PACKARD JOURNAL MAY 1987

© Copr. 1949-1998 Hewlett-Packard Co.

Scalar Product Geometry
The usual geometric calculations used in a two-dimen

sional CAD environment are:
Length and angle calculations
Orthogonal and parallel projections
Parallels
Intersections
Tangential problems.
The basic objects to be dealt with are two-dimensional

points and vectors considered to be elements of a real two-
dimensional scalar product space. The usual Euclidean
distance and the angle between vectors can be expressed
by a scalar product <,>.

Two principles are used to perform geometric calcula
tions:
1. Use a coordinate system related to the special structure
of the problem.
2. Use an orthogonal coordinate system.

As an example, consider the ME Series 5/10 solution of
the class of tangential problems called Apollonian prob
lems. Consider all triples of elements, where an element
is a point, or a line, or a circle. Given such a triple, deter
mine the circle tangential to these elements.

There are ten special tangent problems, namely:

(Al) â€” point point point (point point radius)
(A2) â€” line point point (line point radius)
(A3) â€” circle point point (circle point radius)
(A4) â€” line line point (line line radius)
(A5) â€” line circle point (line circle radius)
(A6) â€” circle circle point (circle circle radius)
(A7) â€” line line line
(A8) â€” line line circle
(A9) â€” line circle circle
(AlO) â€” circle circle circle.

A point can be considered as a circle with radius 0, so
the class of different tangential problems involving ele
ments and points can be reduced to:

(Cl) â€” line line line
(C2) â€” circle circle circle
(C3) â€” line circle circle
(C4) â€” line line circle.

There also must be algorithms for the radius problems:

(C5) â€” line line radius
(C6) â€” circle circle radius
(C7) â€” circle line radius.

To distinguish between the different problems in the
user interface, the following options were introduced:

tan3, covering cases A7 through AlO
Â« tan2_pt, covering case A4, A5, and A6 (radius input for

pt is possible)
â€¢ tan_pt_pt, covering cases A2, A3, and A4 (radius input for

pt is possible)
â€¢ three_pts, covering case Al
â€¢ center, covering the case where the tangential circle is

given by its center and one tangential element.
Now, let us consider the solution to problem AlO. Given

three circles with centers ml, m2, and m3, and radii rl,
r2, and r3, respectively, we want to calculate the center
mO and the radius rO of the tangential circle. The tangential
condition for (ml.rl) is <mO-ml,mO-ml> = (rOÂ±rl)2
and likewise for (m2,r2) and (m3,r3).

In general, there are eight possible solutions to this prob
lem. One possible way is to calculate all solutions, compute
the deviations of the actual tangent points from the approx
imate tangent points and return the minimum deviation
solution. In ME Series 5/10 preselection of the solution is
performed by analyzing the approximate tangent points
and temporarily attaching a sign to the radii rl , r2 , and r3 :

mO = 12 + ^xComplement(d12)

where d12 is the unit vector from ml to m2 and Comple-
ment(d12) is dlz's orthogonal complement. If ml = m2 =
m3, then there is no solution except that also rl = r2 =
r3, so after a possible rearrangement we can assume
ml7im2. Inserting the unknowns, \, n, and rO, in the above
tangent conditions leads to three coupled quadratic equa
tions.

Decompose the vector d13 pointing from ml to m3 into
d12 and its complement: d13 = Td12 + KXComplement(d12).
We then get the following system of equations:

+ /i2 = (rO + rl)2

(d12-A)2 = (rO + r2)2

)2 = (rO + r3)2

(1)

(2)

(3)

These equations are solved by standard elimination tech
niques. There are two solution branches depending on
whether K = OorK^O. K = 0 means geometrically that
the three centers ml, m2, and m3 are colinear. In this case
the radius rO can be found by solving a system of two linear
equations. If K ^ 0, then rO is the solution of a quadratic
equation.

Geometry Software Architecture
The basic software module in ME Series 5/10 for the

Extension Line

Dimension Figure

Dimension Line

Fig. 6 . Example of po in t - to-po int d imension ing.

MAY 1987 HEWLETT-PACKARD JOURNAL 21

© Copr. 1949-1998 Hewlett-Packard Co.

creation of geometry is called ACT_GEO. For each type of
simple geometric element, a specific action routine in ACT_
GEO lets the user create elements of this type in various
ways. To create a circle tangential to three other circles,
the c_circle routine in ACT_GEO calls a specific routine in
CMPNT_CIR. This routine in turn calls a routine in SOLVE
to calculate the center and the radius of the tangential
circle. If a solution is obtained, another routine in CMPNT_
CIR checks the solution, and if the check is positive, calls
a routine in MODEL_DS to create a circle element and then
calls a routine in DRAW to draw the circle onto the graphics
area. Besides ACT_GEO, the software modules in ME Series
5/10 are:
LLGLBLS contains the basic definitions of constants such

as TT, data types such as points, etc.
GECLMTR contains the routines for scalar product geometry.
SOLVE contains the equation solver routines for all the

geometric problems ME Series 5/10 can handle.
MINLDIST contains routines that calculate the distance and

the p ro jec t ions f rom po in t s to e lements . These
routines are used by CMPNTJWY and MODEL_ACC to
identify elements by a pick in the graphics area.

MAP_GEO contains the calculus to deal with geo operators.
Routines from this module are used by part routines,
modification routines, and routines associated with
the user coordinate system.

MODEL_DS contains insert, get, change, and delete routines
for elements realized as abstract data types in a stan
dard format.

CMPNT_ANY contains routines that perform element type
independent calculations such as:

Routines to get other geometric representations of
elements (e.g., circle data from an arc).

Distance from point to element.

Tangent vector at a point to an element.
Intersection point(s) between two elements.
Approximation of an arbitrary element by a point

polygon.
MODEL-ACC contains all the search routines, using MODEL.

DS and CMPNT^ANY.
CATCH uses the MODEL_ACC routines to catch according to

the catch mode.
MODELCHG contains split, merge, delete, etc. subroutines.
CMPNTJJN, CMPNT_CIR, CMPNT_FIL, etc. contain the high-

level routines to create elements.
There are two levels in this software structure with re

spect to data structure. On the low level, objects such as
constants, numbers, points, and vectors are defined and
can be exchanged between routines. On the high level,
beginning with MODEL_DS, one deals basically with abstract
objects such as faces, contours, lines, and model points.
For example, to catch to the intersection point of two lines
on the screen, the user indicates this point approximately
by a pick with the graphic cursor. Then CATCH calls routines
in MODEL-ACC that identify the part, part matrix, and line
elements of the intersection lines. The intersection routine
in CMPNT_ANY gets all this information and decomposes
the line elements into beginning and ending points, which
are transformed by the part matrix to a suitable common
coordinate system. This point information is then passed
to a routine in SOLVE that calculates the intersection point
relative to the coordinate system. After transformation of
the intersection point back to the world coordinate system,
the MODEL-ACC routine checks to see if the intersection
point is in the range of the graphic cursor. If this is not the
case, the CATCH routine passes a NOT FOUND to the calling
action routine. If there are more than two elements passing
through the cursor range, then all possible intersections

Fig . 7 . Example oÃ­ the resu l t o f
the DETAIL command.

22 HEWLETT-PACKARD JOURNAL MAY 1987

© Copr. 1949-1998 Hewlett-Packard Co.

are calculated and the closest to the indicated point is
chosen.

Dimensioning
Dimensioning a given mechanical part means to give a

description of the physical size, shape, and position of the
geometry of that part in a human readable form. Hence,
dimensioning is one of the most important operations in
creating a detailed technical drawing (Fig. 3). There are
national and international standards for dimensioning:
ANSI, ISO, DIN, and JIS, for example.
CAD User Expectations. CAD systems should help the user
concentrate on the design process. Dimensioning a part in
a technical drawing should be easy and fast. The system
should provide a complete set of dimensioning functions.
It should be possible to dimension according to a given
standard. Often it happens that the geometry is changed
after dimensioning. In this case dimensioning should be
associative, that is, follow the modified geometry automat
ically. This system behavior saves a lot of work and time
for the designer. Changing of dimensioning should be easy.
Sometimes it is important that a system be able to perform
isometric dimensioning. For factories using both metric
and nonmetric dimensions it may be important to have a
dual dimensioning capability.

There are many routine tasks: conversion of units, plac
ing of dimension and extension lines, spacing checks,
changing the height of a dimension text for microfilm pur
poses, etc. It is expected that a CAD system will perform
these tasks with as little as possible user interaction.
Dimensioning in ME Series 5/10. One of the ME Series 5/10
design principles is fidelity of the created data, that is, the
user creates geometry that corresponds to the physical size

of the part that will be manufactured. Hence, dimensioning
a part in ME Series 5/10 means to make the inherent geo
metrical properties of the part visible in human readable
form.

The following dimensioning commands and functions
are implemented (see Fig. 4):
â€¢ Line dimensioning. The distance between two points or

the length of an edge can be represented by either datum
or chain dimensioning. Horizontal, vertical, or parallel
dimensioning is optional. Coordinate dimensioning is
possible. To create a dimensioning line, geometrically
defined points such as the endpoints of elements or the
centers of circles are needed.

â€¢ Radius or diameter dimensioning.
â€¢ Arc dimensioning.
â€¢ Angle dimensioning. Suppose a user wants to dimension

the angle between two lines. By digitizing the text posi
tion in one of the four possible quadrants defined by the
lines, it is possible to choose the angle of interest. The
dimension figures can be expressed in decimal as well
as in degree-minute-second notation.
The shape of a dimensioning can be optimized by the

user by changing one or more of the following parameters
(see Fig. 5):
â€¢ Text standard used
â€¢ Height and width of dimension figures
â€¢ Direction of dimension figures
â€¢ Gaps between edge and extension lines
â€¢ Length of extension lines over the dimension lines
â€¢ Number format. For example, the number 0.100 can be

expressed as 0.100, or 0,100, or .100, or 0,1, and so on.
â€¢ Position of dimension figures with respect to the dimen

sion line
â€¢ Units (mm, inch, fractional dimensioning in foot and

inch, dual dimensioning).
Data Structure. There are three design principles for the
dimensioning data structure: flexibility, associativity, and
compactness. Flexibility means including a complete set
of dimension parameters in the data structure so that a user
is able to generate dimensions according to a particular
standard. Associativity means using references to geometry

A

Ã­b
I
I

J

Fig. 8 . Isometr ic d imension ing can be g iven to shared par ts
only.

F ig . 9 . F ind ing the c losed outer contour (so l id l ine) . The a l
go r i thm backs ou t o f "dead-end s t ree ts " l i ke abed (dashed
line).

MAY 1987 HEWLETT-PACKARD JOURNAL 23

© Copr. 1949-1998 Hewlett-Packard Co.

to let the dimensioning automatically follow any modifica
tion of the geometry. Compactness means to store only the
most basic pieces of an actual dimensioning so that it is
possible to reconstruct the expected display image from
the stored data.

As an example, we consider a point-to-point dimension
ing (see Fig. 6). The picture on the display consists of the
geometry, the dimension line, the extension line, and the
dimension figure. Stored in the data structure are references
to the geometry, the values of parameters, and the dimen
sion text location in relative coordinates with respect to
the geometry. Drawing this dimensioning means adding
the nonstored dimension data by using an algorithm so
that the complete display picture appears.

What do relative coordinates mean? In the case of our
example, the user must indicate two vertex points and the
text position. The text position point is transformed into
the coordinate system where the origin is defined by the
first-indicated point, the x-axis by the line connecting the
geometry points, and the y-axis by the line parallel to the

extension lines passing through the origin. The length unit
on the x-axis is defined by the distance of the vertex points;
the length unit on the y-axis is defined by the internal units
(mm). The information on this user-defined text location
is kept even if the text figure does not fit between the
extension lines. In such a case, the dimension figure will
be drawn outside the extension lines. If, after a modifica
tion, the text figure will fit, the system remembers the text
position and draws the text at the user-defined position.

To make the data structure more compact, a set of param
eters that usually have equal values across a drawing is
kept in a special buffer as a single item. As long as these
parameters are used, any newly created dimensioning
points to this item in the buffer. If one of the parameters
is changed, the system searches in the buffer for an identical
item. If such an item is found it will be used; otherwise, a
corresponding item will be generated. The buffer is or
ganized as a linear list.
Dimensioning is attached to a part. A part is an element
that contains other elements of any type, including parts.

E X A M P L E
H A T C H H A T C H T Y P E

M E 1 0 C O M M A N D T O
M A K E T H I S H A T C H

C U R R E N T _ H A T C H _ P A T T E R N
0 1 4 5 G R E E N S O L I D
0 1 1 3 5 G R E E N S O L I D
CONFIRM

C U R R E N T _ H A T C H _ P A T T E R N
0 1 0 G R E E N S O L I D
CONFIRM

I P P E B

C U R R E N T _ H A T C H _ P A T T E R N
0 1 0 G R E E N S O L I D
0 . 5 1 0 G R E E N D A S H E D
CONFIRM

C U R R E N T _ H A T C H _ P A T T E R N
0 1 0 G R E E N S O L I D
0 . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 0 G R E E N S O L I D
CONFIRM

y
Â«r- - Â¡

riÂ» 3555?
T

C U R R E N T _ H A T C H _ P A T T E R N
O 1 O G R E E N D A S H E D
O 0 . 7 0 7 1 0 6 7 8 1 1 8 6 5 5 4 5 G R E E N D O T T E D
O 1 9 0 G R E E N D A S H E D
O 0 . 7 0 7 1 0 6 7 8 1 1 8 6 5 5 1 3 5 G R E E N D O T T E D
CONFIRM

F i g . 1 0 . E x a m p l e s o f h a t c h i n g .
Hatch def ines the locat ion , or ien
ta t ion, and s ize of the pat tern on
the face.

24 HEWLETT-PACKARD JOURNAL MAY 1987

© Copr. 1949-1998 Hewlett-Packard Co.

The dimension data is stored in this part.
Associativity of dimension data is an important feature

in ME Series 5 10. Therefore, the dimensioning algorithms
follow a high-level description of the algorithms invoked
by the MODIFY command. The user selects geometry ele
ments to be modified. These elements are kept in a separate
list. The system searches the dimensioning data pointing
to geometry in this list and collects the data for the selected
elements in a separate dimensioning list. The geometry is
then modified sequentially and the affected dimensioning
is automatically adjusted to the values of the new geometry.

The text location of a dimension is defined with respect
to a mixed coordinate system. One axis of the coordinate
system (the x axis) is changed automatically by the new
geometry values, but the other axis value must be calculated
from the transformation type and the old value. In addition,
for stretching, the transformation can change from element
to element. So the dimensioning must be modified in paral
lel with the geometry.

Parts in ME Series 5/10 have their own transformation
(see section on parts data structures). The purpose of this
transformation is to express the part content in the parent
coordinate system. This transformation is classified by its
geometric meaning. In addition to the mathematical mean
ing (length, angle, parallelism preserving), there is informa
tion on the use of the part data. In the case of an isometric
view, the part data does not represent physical data, but
instead a view of the physical data. Hence, in ME Series
5/10 an additional part identifier is included to cover the
cases of modeltype, viewtype, and detailtype parts.

By default, the system assigns a modeltype identifier to
a new part. Using the ISOMETRIC command with shared
parts, the system automatically assigns the viewtype iden
tifier. On the other hand, the result of the DETAIL command
is a shared detailtype part (see Fig. 7).

The part identifier is used to draw the part dimensioning.
The display appearance of a dimension is generated by a
mapping mechanism, converting the stored data to the dis
play data. In the case of a modeltype identifier, the geome
try information is transformed by the part transformation,
and then the normal display mechanism applies to this
data. For a detailtype identifier, the system behaves as in
the modeltype case except that the dimension figure is
calculated from the original values In the case of a view-
type identifier, the geometry information remains un
changed while the display mechanism is adjusted to in-

I N I T _ S U B P A R T ' R I G H T H O L E -
LINE . . .
ARC . . .

E N D _ P A R T

LINE . . .
ARC . . .

C R E A T E _ S U B P A R T ' L E F T H O L E '
[I D E N T I F Y T H E L I N E + A R C]

F i g . 1 2 . L i s t o f c o m m a n d s t h a t c o u l d h a v e b e e n u s e d t o
create the drawing shown in F ig. 11.

elude the part transformation. In the current state of the
program, an isometric dimensioning can be given to shared
parts only (Fig. 8).

Hatching
Besides the geometric information, the ME Series 5/10

data structure also contains topological information. The
data structure can be viewed as a topological net. A topolog
ical net is a finite set of objects from two abstract classes
called knots and edges obeying the following rules: an edge
connects two knots (equal or unequal) and at least one edge
extends from each knot.

The elements of the topological model are:
â€¢ Model points: the knots of the topological net.
â€¢ Primitive components: edges starting and ending at

model points (e.g., lines, circles, circular arcs, splines,
and polygons).

â€¢ Contours: an ordered set of primitive connected compo
nents where every component occurs only once in the
contour.

â€¢ Faces: defined by one outer and none, one, or more inner
contours.
Primitive components are connected if they share at least

Fig. 1 1 . Simple ME Series 10 pan
d rawing , (a) Geomet ry , (b) Par ts
structure.

MAY 1987 HEWLETT-PACKARD JOURNAL 25

© Copr. 1949-1998 Hewlett-Packard Co.

one model point. The components of a contour are ordered
so that every component except the first and the last is
connected with both of i ts neighboring components. A
property of the contour is that the components are con
nected with no other components in the contour except
their neighboring components. If the first and the last com
ponent of a contour are connected, the contour is called
closed.

Recognit ion of Faces in Topological Nets
ME Series 5/10 includes a mechanism that recognizes

and creates faces identified by the user. There are various
ways in which a user can identify faces to the system. The
easiest is to indicate a point on the face. Because faces are
defined by their boundaries, there are two tasks: finding
the closed outer contour and finding any closed inner con
tours.
Finding the Closed Outer Contour. An infinite ray starting
at the point indicated intersects at least once with every
contour that includes the point. Starting with the compo
nent the ray intersects first, the algorithm tries to find a
closed contour including the point. If no such contour can
be found, the next component intersected by the ray is
used for the search.

The beginning and ending points of the start component
for the contour search are defined so that the component
is run through counterclockwise relative to the point that
has been indicated. Starting at the endpoint we search for
connected components until the beginning point of the
start component is reached. If a point is reached where we
have the choice between several components to go along,
we use the one leading to the left. Since we run around
the point in a counterclockwise sense, going left ensures
that we find the innermost contour of all the contours that
include the point.

If a point is reached where no connected component can
be found, we change direction and go back the same way
until we come to the last point where we had the choice
between several components. There we take the component
leading to the left. This is the one we would have taken if
the dead-end street we just took was not there.

Only two rules are used to determine the connected com
ponents. The first tells what to do when reaching a knot
that has several branches, and the second tells what to do
when reaching an endpoint of the net.

Keeping track of the route results in a list of components
where preceding components are connected by a common
point. This list contains all the dead-end streets we tried,

so they are to be sorted out. Every dead-end street forces
a return. In the list a return is documented by a component
followed by itself. If we go back along a dead-end street,
we pass the same components we passed on our way in
but in opposite order. Hence, every dead-end street has the
following appearance in the component list: ...a-b-c-d-d-c-
b-a.... (see Fig. 9).

Removing the return component d followed by i tself
yields: ...a-b-c-c-b-a... Going on to remove each component
followed by itself results in a contour with no dead-end
streets. It is obvious that the algorithm not only works with
simple dead-end streets but also with complex connections
of dead-end streets.

Removing all dead-end streets may give a closed contour
as we have defined it above, but it need not. It also may
result in a few closed contours connected by bridges con
sisting of one or more components. Bridges exist if we still
have components in our list that occur at least twice but
are separated by other components. If we split our list at
these bridges we get several closed contours. One of them
is the outer contour we are searching for, the others are
inner contours connected with the outer contour. To select
the outer contour we search for the contour inside which
the indicated point lies.

This test depends on the fact that a point lies in a contour
when the number of intersections of any ray starting at the
point with the contour is odd. Since the direction of the
ray is optional, i t is a good idea to choose a vertical or
horizontal ray to make computation easy and quick.
Finding the Closed Inner Contours. First, the number of
components that are used for the search of inner contours
is reduced by a box test using the box of the outer contour.
Then starting with an arbitrary component, we try to find
contours by searching for connected components. If a point
is reached where more than two components are connected,
all components reachable from that point are recursively
searched. Thus, a subset of components is gained. This
subset forms a net. The outline contour or contours of the
net are to be found. This can be done using the same al
gorithm described above for finding the face's outer con
tour. The only difference is that we now use a point outside
the contour we hope to find.

The start component for the outline search is the compo
nent reached first when an arbitrary ray from a point out
side is shot through the net. The beginning and ending
points of the component are ordered the same way as above.
The turn-left rule used for finding the outer contour of the
face led to the innermost contour around the point. Since

Fig. 13. Desi red modi f icat ion of F ig . 12 par ts s t ructure (see
text).

L i s t o f L i n e s

L i s t o f A r c s

L i s t o f C i r c l e s

P o i n t T r e e f o r t h e s e E l e m e n t s

Fig . in Graph ica l representa t ion o f a par t da ta s t ruc tu re in
ME Series 10.

26 HEWLETT-PACKARD JOURNAL MAY 1987

© Copr. 1949-1998 Hewlett-Packard Co.

the point now lies outside the net, the turn-left rule leads
to the outermost contour of the net. If only points occur
connecting two components, the contour is found when
the beginning point of the first component is reached again.

\\hen all contours in the box of the outer contour are
found, we have to sort out those that do not lie in the outer
contour and those that lie in other inner contours. The
following rule is used: A contour I lies in a contour O if I
does not intersect O and one point of I lies inside O.

Hatch Data Structure
In mechanical engineering, the exposed cut surfaces of

sectional views are indicated by hatching. Symbolic hatch
ing is used to distinguish various materials. In ME Series
5/10, symbols for materials can be created by superimpos
ing sets of parallel lines. The symbols are called patterns.

The data structure for the hatch in ME Series 5/10 consists
of three elements:
â€¢ Simple pattern â€” all the data needed to define a set of

parallel lines. It contains display information like color
or linetype and geometric information defining the dis
tance between the lines and the orientation and location
of the line set in the pattern.

â€¢ Pattern â€” a simple pattern or a connection of simple pat
terns.

â€¢ Hatch â€” defines the location, orientation, and size of the
pattern on the face (see Fig. 10).
A pattern can be shared by hatches, and a hatch can be

shared by faces.
In many CAD systems, hatch is a separate element not

coupled with geometry. In ME Series 5/10 another approach
has been chosen. Hatch is considered to be an attribute of
faces. Hence, hatch is coupled with geometry through faces.

Modif icat ion of Faces and Contours
The composite components, contours and faces, are up

dated automatically when the underlying simple subcom
ponents are modified. However, in the case of a MODIFY
copy operation, hatches are copied automatically. The user
cannot select faces and contours directly. Selection works
on the simple component level. So the generic input for
the MODIFY command consists of a list of simple compo
nents. This means that faces and contours pointing to these
simple components have to be recognized. If all the simple
components of a contour are in the list, the simple compo
nents are replaced by the contour. If all the contours of a
face are in the list, the contours are replaced by the face.
The result of this preprocessing is a list containing parts,
faces, contours, and independent simple components.

In ME Series 5/10, composite components can share their

subcomponents. So we must take care that a component
belonging to several composite components in the list is
not modified twice or more. Therefore, the first step of the
modification algorithm is to initialize the temporary attri
bute associated with each component. Only if the value of
the temporary attribute of a component has its initial value
at modification time will this component be modified and
the address of the image component stored in the temporary
attribute. The modify information stored in the temporary
attributes is also used by an UNDO of the current MODIFY
command where the inverse transformation is applied to
all components with noninitial temporary attributes. This
is especially important for the STRETCH command, since
the original topological information about how to stretch
is condensed to the temporary attributes.

Parts
Up to this point we have discussed a number of elements:

lines, circles, arcs, and so on. Now we turn to a new ele
ment: parts. A part is an element that contains other ele
ments of any type, including parts. A part usually corre
sponds to some physical object, like a screw, or to an assem
bly of physical objects, like a pump. But parts can be simply
groups of elements that the user finds convenient to manip
ulate as a unit, and may have no direct physical meaning.

Parts in a drawing are like directories in a file system.
A part is an element, just as a directory is a file, and a part
contains elements, just as a directory contains files. A part
can contain a part, just as a directory can contain another
directory. Parts impose a hierarchy on the elements of a
drawing, just as directories do with a file system.

It is common to represent this hierarchy graphically as
a tree, much like a directory tree. Fig. 11 shows a simple
ME Series 5/10 drawing representing two symmetrical
holes, and the parts structure for this drawing. Elements
are represented as circles. The elements on the bottom line
are lines (L) and arcs (A); the other elements are parts. Each
hole is a part consisting of a line and an arc. The two holes
are named Left Hole (LH) and Right Hole (RH). The holes
belong to a part called Top, which is present in every ME
Series 5/10 drawing.

The two holes could also be drawn without parts, in
which case the only elements of the drawing would be the
two lines and the two arcs, plus the everpresent Top part.
So why should a user bother to create the part structure in
Fig. 11? There are several reasons:
1. A part can be treated as a single unit when modifying,
deleting, storing, or loading. Assume the user wants to
move the two holes closer together, for example. The user

Fig. 15. Data s t ructure representat ion of par t shown in F ig .
11.

Fig. 1 6. Different data structure for Fig. 1 1 if LH and RH were
shared.

MAY 1987 HEWLETT-PACKARD JOURNAL 27

© Copr. 1949-1998 Hewlett-Packard Co.

can identify the part to be moved by picking any element
belonging to it. With complex parts, this can be very con
venient.
2. Parts can be reused. The user might keep a library of
commonly used screws, for example, and load them as
parts when needed. If a drawing is made completely from
library parts, the user needn't actually draw anything; the
user only needs to say where the parts go.
3. Parts can be shared. When two parts in a drawing are
shared, any change to one is reflected immediately in the
other. The two holes in Fig. 11 could have been created as
shared parts, for example, although for simplicity they were
not.

One goal of ME Series 5/10 is to treat parts like other
elements as much as possible. We have tried to avoid creat
ing two sets of commands, one for use with simple elements
and the other for use with parts. Instead, we try to use the
same commands for all elements. For example, there is no
DELETEPART command; there is only DELETE, which applies
to parts as well as other elements.

Nevertheless, there are a few special parts commands.
Two commands are used to create parts. With CREATESUB-
PART, the user specifies which elements will belong to the
new part with the requirement that the elements must al
ready exist. INIT_SUBPART creates a new part with no ele
ments; the user can then add the elements that will be in
the part. Whether CREATE_SUBPART or INIT_SUBPART is used
is the user's choice. The drawing and parts structure in
Fig. 11 then could have been made with the commands
listed in Fig. 12.

EDIT_PART chooses the active part, which is very much
like the current directory of a file system. Only one part
can be active at a time. The active part is the one to which
all new elements belong. In Fig. 12, INIT_SUBPART both
created a new part RH and changed the active part to be
RH. LINE and ARC then created elements in RH.

The active part is also important for identification with
the tablet or mouse. Suppose the user wants to delete RH.
The user picks DELETE from the menu, and then picks, say,
the arc of RH. How does the system know whether to delete
just the arc, or the entire part? It doesn't, without some
convention. The convention we have chosen is that the
element to be deleted (or modified, or identified for some
other purpose) is always in the active part. In our scenario,
if the active part is Top, the system deletes RH. At that
level, RH is an indivisible unit. But if the active part is RH,
the system deletes the arc. What if the active part is LH?
In this case, the system has no way to tell what the user
wants, so it just beeps.

The active part is so important that we have done two
things to make plain to the user where the part is. First,
the status line contains its name. Second, elements in the
active part are drawn with the color and linetype chosen
by the user (default values are white and solid), while all
other elements are drawn in magenta and dotted, making
them less prominent on the screen.

Two commands are used to rearrange the parts structure:
SMASH_SUBPART and GATHER. SMAShLSUBPART deletes a
part, but leaves its member elements behind in the same
place. GATHER pulls elements into the active part. As an
example of the use of these two commands, suppose we

want to modify the parts structure of Fig. 11 so that it looks
like Fig. 13. That is, all four simple elements are to be
members of the same part. One possible way would be to
edit the Top part and then enter SMASH_SUBPART "LH". Now
the drawing has the structure shown in Fig. 13, and the
job is half done. To finish, we edit RH and then enter
GATHER and identify the line and arc that used to belong
to LH. This produces the result we want.

VIEW is a command that causes a part to be viewed in a
viewport without its surrounding context. Normally, a port
has a view of the Top part, but it is sometimes convenient
to view some other part while you are working on it. Nor
mally it suffices just to change the window, but if two parts
overlap, only a view can show one without the other. It is
even possible to have several viewports, with an overview
of Top in one port and views of other parts in other ports.
Parts Data Structures. Internally, each element is rep
resented by a block of memory containing the element's
color, linetype, and other properties common to all ele
ments. In the following discussion, we call this block the
element's head, and represent it as a circle. At the end of
the head is data specific to the type of element represented.
A line, for example, has pointers to its endpoints. A con
struction circle has a radius and a pointer to its center
point. A part has a pointer to a block we call the part's
body. Graphically, we might represent a part as shown in
Fig. 14. The part body contains lists of its member elements,
one list per element type. Having one list per type makes
the system faster in several situations than it would be if
all elements were in a single list. These situations arise
when the system knows that only elements of certain types
are interesting for the command. CONVERT_SPLINE, for
example, converts splines to lines and arcs, and needn't
consider any elements other than splines. Its also possible
for the user to qualify a command with an element type,
as in DELETE CIRCLES ALL, which deletes circles.

Each part has its own point quad tree, containing the
model points for all its member elements, except those that
themselves are parts. This arrangement is much more suit
able than having a single point tree. It is very simple to
delete a part with the current scheme, for example. There
is no need to restructure a large point tree; we just throw
away the tree of the deleted part. This scheme is also con
venient for point catching, since we can easily search for
points in visible parts without having to look at points in

D R A W (E L E M E N T , M A T R I X)

F O R E A C H N O N _ P A R T E L E M E N T G
D R A W _ E L E M E N T (G , M A T R I X)

F O R E A C H P A R T E L E M E N T P
M : = P ' S M A T R I X
D R A W (P . M A T R I X * M)

Fig . 17. S imple vers ion o f a draw rout ine . The mat r ix repre
sents a mirror ing transformation.

28 HEWLETT-PACKARD JOURNAL MAY 1987

© Copr. 1949-1998 Hewlett-Packard Co.

parts that are not being viewed.
The fact that a part's head is separate from its body is

the key to shared parts . Fig. 15 shows a data structure
representation of the drawing in Fig. 11. Notice that LH
and RH contain different elements. One part can be changed
independently of the other.

If LH and RH were shared, the display would look exactly
the same, but the data structure would look like Fig. 16.
The structure is much the same as that of Fig. 15. but with
one essential difference: the two parts LH and RH share
the same body, and thus the same elements. In this case,
a change in one part is a change in the other, since internally
there is only one representation of the two parts' contents.

How can a data structure with one line and one arc in
Fig. 16 look the same as one with two lines and two arcs
in Fig. 15? How does ME Series 5/10 know that the shared
l ine and arc are to be drawn twice? How does i t know
where to draw them? The answer is that each part head
contains a matrix telling how to transform the part contents
for the part instance represented by the head.

The matrix can represent several types of transforma
tions: none at all, a translation, a rotation, a scaling, or a
mirroring. In Fig. 17, the matrix represents a mirroring.
The matrix can also represent combinations of transforma
tions as well as parallel perspectives. The matrix is created
by the MODIFY command when it notices that the part has
been declared shared by the command SHARE_PART. If the
part is not shared, the MODIFY command must transform
and possibly copy every element in the part. This can be
slow for large parts. Hence, another advantage of shared
parts is that the execution of MODIFY commands is much
faster.

Since shared parts can be nested, there may be several
matrices that apply to a given element. To draw an element,
the system needs to transform it with each matrix along
the path from that element to the Top part. To draw every
element (when the user changes the window, for example),
the draw routine must walk over the entire parts tree, main
taining at each point the product of matrices from the Top
part to that point. A (very) simplified version of a draw
routine is shown in Fig. 17 in a mixture of Pascal and
English. The routine shows the sort of recursive approach
that pervades all of the parts software.

closest element to this point within the search range. In
this case the search is successful and the address of the
line element is passed to the delete action routine. This is
what is called implicit selection. The user poses an easy-to-
solve problem and the system need not have more informa
tion to solve the problem.

Other features of the implicit selection are given by the
automatic vertex and box option. In picking a vertex, the
system selects all elements that share this vertex. Now
suppose the user entered a point and no elements passing
through the search circle around this point were found.
Then the system interprets this point as a box corner and
asks for the other (diagonal) box corner. Then the elements
completely inside this box are searched and passed to the
calling action routine.
Explicit Selection. To get explicit selection the user enters
the SELECT command. For example, the user wants to delete
three lines scattered around the screen. Probably the easiest
way to do this is to use DELETE SELECT pickl pick2 picks CON
FIRM. SELECT triggers the selection action routine to expect
input until the loop is finished with CONFIRM. As described
above, a point token lets the selection routine search for a
closest element. VERTEX and BOX can now be entered as
explicit options.

With explicit selection the user can select elements with
more options. There are the logical operators AND, OR, EXOR,
NOT, ADD, and SUBTRACT. The element types POINTS, LINES,
ARCS, FILLETS, CIRCLES, TEXTS, SPLINES, CJJNES, C_CIR-
CLES, PARTS, GEO, and C_GEO can be used. Colors and
linetypes can also be used as search patterns. For example,
it is possible to select all blue arcs included in box 1 and
not included in box 2. The user can also select all elements
with the associated information string "remove me" that
are not of long-dotted linetype. In connection with informa
tion literals, wild cards can be used. SELECT INFO ""er"
selects all elements whose information strings end with

Reference
1. H. Samet, "The Quad tree and Related Hierachical Data Struc
tures, Computing Surveys, Vol. 16, no. 2, June 1984.

Select ion Mechanism
In many ME Series 5/10 commands, the first action is to

select elements. Examples are DELETE, MODIFY, SPLIT,
CHANGE_COLOR, CHANGE_FILLET, etc. For these commands,
ME Series 5/10 uses a common mechanism called selection.
In other commands, such as GATHER and STRETCH, more
information has to be selected, so these commands use a
different selection mechanism.

Selection works either locally in the current part or, if
the user has entered GLOBAL, in all parts.
Implicit Selection. Suppose the user wants to delete only
one l ine. Probably the easiest way to do this is to cal l
DELETE and to pick this element on the screen. On the
action routine level, the delete action routine passes control
to the selection action routine. This routine finds a point
token from the user pick on the screen. This piece of infor
mation causes a search of the data structure to find the

MAY 1987 HEWLETT-PACKARD JOURNAL 29

© Copr. 1949-1998 Hewlett-Packard Co.

Alpha Site Evaluat ion of ME Series 5/10
by Paul Harmon

WHEN WE FIRST HEARD at HP's Vancouver,
Washington Division of a new software package
being developed in one of HP's facilities in Ger

many for two-dimensional computer-aided drafting (2D
CAD), there was skepticism about the value of developing
such a product within HP. Several software packages of
that general description already existed and some were
very good. Within HP, HP Draft had just been released on
HP 9000 Series 200 Computers, and EGS-200 was getting
a major overhaul that greatly increased its performance as
a mechanical engineer's tool. Outside HP, several other
programs developed by other manufacturers were avail
able. Beyond that, many felt that recently announced sys
tems that incorporated three-dimensional CAD capability
were much more powerful than any possible 2D system
and, though many times more expensive, represented a
better investment.

At HP's Vancouver Division (VCD), we had two projects
that were making use of CAD to design next-generation
personal workstation printers. The first project used HP
Draft on our HP 9000 Series 200 Computers and was an
alpha test site for the second generation of EGS-200. The
second project used another company's three-dimensional
solids software on dedicated hardware. Another group, still
working with pencil and paper, was considering making
the switch to CAD.

Consensus as to which system the whole lab at VCD
should adopt was difficult to arrive at, since each option
had advantages as well as disadvantages.

The Ideal CAD Workstat ion
As we worked with our CAD tools, we began to see what

an ideal system should include:
1 The hardware should be inexpensive so that each en

gineer can be provided with a personal station, eliminat
ing timesharing (which we found to be deadly to produc
tivity).

â€¢ The system should be powerful enough to execute the
CAD program quickly while being flexible enough to use
for other engineering tasks such as instrument control,
custom analysis, document preparation, and electronic
mail.

â€¢ The individual workstations should be networked so
that data can be shared instantaneously within the de
velopment organization, and eventually between organi
zations.

â€¢ The operating system should be easy to comprehend and
allow multitasking for shared tasks such as instrument
control, long batch mode analysis, etc.

â€¢ The program must be accurate enough to cover the range
of sizes we would have in a typical layout.

â€¢ The software should incorporate a three-dimensional
solid modeler as well as an easily understood two-di
mensional graphics editor with a full feature set.

â€¢ It should be possible to customize the user interface and
write special subroutines, or macros.

â€¢ There should be links to both finite element (FE) analysis
programs and numerically controlled (NC) machinery
for CAD/CAM integration.

â€¢ Links should exist to outside vendors, possibly through
the Initial Graphics Exchange Standard (IGES).

â€¢ There should be easy access to spreadsheet, word pro
cessing, and electronic mail to provide an integrated
workstation for maximum productivity.

â€¢ Above all, each part of the system should be reliable. It
doesn't take long to eliminate all productivity gains if
the system fails often.
The CAD systems we were familiar with provided less

than half these capabilities. When we asked about ME
Series 10, we found that it was being designed to run under
the HP-UX operating system (HP's version of AT&T's UNIXâ„¢
operating system) on HP desktop computers, provide links
to FE and NC packages that we were already successfully
using with HP Draft, and provide a macro language which
would allow a high degree of flexibility. Although lacking
three-dimensional solids modeling capability, ME Series
10 was always intended to be the user interface for the new
three-dimensional modeling system (ME Series 30) intro
duced by HP in November 1986. Since the description
sounded so close to our concept of the ideal CAD system,
we offered to be an alpha test site. Although HP's Boblingen
Engineering Operation in Germany (the authors of ME
Series 10) initially thought Vancouver, Washington was
too remote to be an effective test site, effective lobbying
from Trent Christensen of Lake Stevens Division (the U.S.
support engineer for ME Series 1 0) and our CAD experience
with other systems convinced them it was worth their time
to add us to their list.

Test ing ME Ser ies 10
A team from HP's Lake Stevens Division and Boblingen

installed our first revision of ME Series 10 on our local
shared network and we immediately began using it to de
sign some of the parts for a new printer. As we went through
the design process, we discovered some very impressive
new capabilities, some very irritating limitations, and our
quota of bugs. These observations were collected over the
network and sent to Boblingen once a month via HP Desk,
HP's electronic mail system. The ME Series 10 authors
would then respond as they deemed appropriate.

From the outset it was apparent that we were working
with a winner, although one that needed a little smoothing
out. Engineers familiar with HP Draft were up to speed on
ME Series 10 (creating drawings, doing isometrics, etc.) in
a couple of weeks from a cold start. (The isometric shown
in Fig. 1 was created by an engineer less than a week after
he transferred to ME Series 10 from HP Draft.)

Yet these same users have not found the program to be

30 HEWLETT-PACKARD JOURNAL MAY 1987

© Copr. 1949-1998 Hewlett-Packard Co.

a toy that is restrictive or lacking in power. As the experi
ence of our group using ME Series 10 progresses, we find
the program a powerful tool that aids us in the development
process.

One of the disadvantages of being an alpha site is the
lack of manuals. It is a credit to the program that our users
were able to transfer their knowledge from HP Draft to ME
Series 10 so quickly using only the on-line help provided
within the system augmented by startup help from the local
ME Series 10 guru. Still, some of our engineers found it
difficult to use the compact flowchart style information
presented therein and would have preferred an illustrated,
written manual.

The biggest disadvantage of being a test site for new
software is the potential for losing data to software bugs.
We (and several other sites) came up with several bugs,
including one in the beginning that occasionally destroyed
not only the drawing currently in memory, but its stored
copy as well! However, if ME Series 10 had been too fraught
with bugs we would have stopped using it. Because the
bugs were few and quickly fixed by the authors, we used
ME Series 10 throughout our development project.

Miss ing Capab i l i t i e s
A powerful macro language is included with ME Series

10 that lets you virtually redefine the product if you desire.
Still, with experience we found some language functions
missing that we could not easily work around. The ME
Series 10 development team was ven- responsive to our
requests, and as each successive version came out. we were
pleased to find one complaint after another disappear. The
more we use the ME Series 10 macro language, the more
we wish to do with it. However, it is unlikely that the
authors will be able or willing to satisfy all of our requests.
We noticed in our evaluation that alpha test sites never
ask for fewer features, always more!

One of the limitations we found in the early versions of
ME Series 10 was a lack of any layering capability. Al
though it provided a method of viewing parts individually
(using the parts tree), no method to view groups of parts
from different assemblies was provided. Layering was
added and the user can now have a part on several layers
at once, a nice advance over previous CAD systems.

Dimensioning was quite irritating. In trying to provide
a completely automatic method for the engineer, ME Series

A S S E M B L E A S S H O W N

Fig. 1 . Isometr ic drawing created
b y e n g i n e e r w i t h o n e w e e k ' s e x
per ience on ME Ser ies 10.

MAY 1987 HEWLETT-PACKARD JOURNAL 31

© Copr. 1949-1998 Hewlett-Packard Co.

10 would place dimensions in accord with standards set
up by ANSI. While admirable, not all situations are foreseen
by this august body and occasionally (but too often) we
found the program putting dimension text where it decided
the text should be and not where we wanted it. The ME
Series 10 development team saw nothing wrong with this
state of affairs and would have released the product with
completely automatic dimensioning intact. While we are
all for ANSI standards, we did not like the program enforc
ing the letter of the law and convinced them that most
engineers would not like it either. ME Series 10 now offers
greater freedom for dimension placement.

In the early versions of ME Series 10, plotting was dif
ficult. Although we usually prefer flexibility, when it
comes to plotting we want no surprises. ME Series 10 has
the capability to plot anywhere on the page and in the early
versions the user was required to tell it where to plot on
a page. The authors have added macros to make normal
plotting (i.e., putting a D-size drawing on paper) straightfor
ward. Users simply tell the program to send the contents
of the screen to whatever paper is in the plotter. Custom
positioning on a sheet is still possible for the advanced user.

When we first received the program, there were no plans
for manual hatching. Automatic hatching is very fast and
quite powerful but there are circumstances where the user
wants to do it manually and the development team had to
be convinced of this. ME Series 10 now has a manual hatch
ing mode.

Sometimes You Don't Get What You Ask for Immediately...
There are a few functions in ME Series 10 that we feel

still need development and as an alpha test site we had
the opportunity to present these to the program's designers.
The program's authors had several more pressing issues to
attend to before the introduction of ME Series 10 and, as
a consequence, some (in our opinion) needed improve
ments did not make it into production code. We have been
told these will be incorporated in a future revision, how
ever.

. . .And You Don' t A lways Want What You Ask for !
Sometimes the authors refused to make a requested

change and we later realized that they were correct in doing
so. For instance, at the beginning we requested that ME
Series 10 set up the drawing area with the user-selectable

"electronic sheet of paper" (A, B, C, etc.) analogy, just as
HP Draft had done. We were comfortable with the analogy
and felt a little lost without it. The authors refused and as
we became more familiar with ME Series 10 we found that
being locked into standard formats was indeed restrictive.
We came to appreciate the infinite work surface of ME
Series 10.

As another example, we often asked the authors to pro
vide more macros with the base system. They politely told
us to go write them ourselves. After a hesistant start we
found that writing macros was as easy as they said it would
be. By encouraging us to write macros, the authors showed
us the means for achieving great flexibility and control.
We use our fluency with the macro language to help get
maximum performance from the program. We often write
small procedures to help with particularly repetitive or
automatable tasks (like "While I'm at lunch, plot this draw
ing, load that one, plot it, and then load another one.").

Some Funct ions Impressive f rom the Start
The macro language of ME Series 10 and the way it is

implemented are extremely impressive and the key to very
high productivity. All eight engineers using the program
have developed individual menus and commands, collec
tively referred to as personalities. Macros are easy for the
interested novice to learn, yet powerful enough for the
experienced user. We have written macros ranging in com
plexity from simple one-line typing aids to a set that pro
vides an on-screen, full-function RPN calculator and
another set that helps an engineer design cantilever beams.

A simple screen editor is provided within ME Series 10
to help in macro development. Basic system instructions
are keywords such as LINE, ARC, FIT, and EDIT_PART, which
make it easy to remember command names. Because of
these features, it is productive for us to create small macros
as we work. If we feel some feature of ME Series 10 is
awkward or a function is missing, we can usually add the
function through macros or change the operation of the
feature on the spot and store it for future use. This provides
easy adaptability that actually gets used often.

We are continually impressed with a function designed
to help construct isometric and general three-dimensional
views of the part we are designing. Using AFFINE, a user
can create two-dimensional isometric, dimetric, and trimet-
ric drawings in a third of the time required to do so without

Carriage
Engineer

Chassis
Engineer

and Layout
Coordinator

(b)

Fig. 2. Using a group of f i les in an
SRM d i rec to ry as a deve lopment
team's master layout changes the
i n fo rma t ion f l ow w i th in a p ro jec t
from (a) to (b).

32 HEWLETT-PACKARD JOURNAL MAY 1987

© Copr. 1949-1998 Hewlett-Packard Co.

it. This functionality relieves some (but not all) of our desire
for three-dimensional solids modeling, because AFFINE
makes it fairly easy for us to provide the shop with general
views of a part we wish to have created. As an added benefit
we often find mistakes during the process of creating the
isometric view, saving us time and embarrassment. With
complex parts the model maker rapidly gets a good feel for
what is to be created. Although the value of an isometric
view is less for a simple part, the process used to create
the view is then so easy that we almost always make one.

ME Series 10 supports group interaction during the de
sign process well. The parts tree structure allows layouts
to have logical part groupings. This means subassemblies
can be moved around and edited easily. In fact, subas
semblies can be kept in several different files and pulled
in only when needed. This allows engineers to work on
their designs and yet communicate changes in near real
time to the entire product team. We have our printer
geometry divided between several files in a master layout
subdirectory on our Shared Resource Management (SKM)
network which the engineers work in and add information
to. Product development time is conserved by lowering the
number of build cycles required to find interferences be
tween parts. We can do this because each designer can
view on a local workstation how a particular design re
lates to other parts. Hence, our intragroup communications
have become more effective (see Fig. 2.)

The two-dimensional analysis function built into the
code was well received. It allows calculation of area,
perimeter, and moments of inertia for any shape you can
sketch. Dimensions can be moved around once created and
automatically change in value if the part is stretched or
changed. Dimensions for the whole drawing can be con
verted from metric units to inches with a simple toggle.
Hatching stretches with the part. It is possible to change
the size of a fillet after putting it in place, a great help.
Three different types of layout grids are included (dot, line,
and ruler). Full HP Draft construction line functionality is
included. In short, ME Series 10 now has all the capability

expected of a two-dimensional system plus some added
special features.

Using a translator, we can move ME Series 10 drawings
directly into programs for driving our model shop's NC
milling machine. The existence of this link (which also
exists for HP Draft) has greatly enhanced the efficiency of
the shop and has yielded a noticeable drop in part defects
caused by poor communication compared to the time be
fore our link was in place.

Throughout our testing of ME Series 10 we found the
development team at BÃ²blingen to be enthusiastic and re
sponsive to our suggestions. They were surprised that we
preferred the option of having manual methods available
rather than relying on automatic methods completely and
learned that mechanical engineers like to do things their
own way, regardless of how it is done down the street. We
were impressed with the capabilities of ME Series 10 and
saw an opportunity to define a tool for ourselves, getting
a few steps closer to that ideal CAD station. In the process
we learned a lot about the way we use our tools and in so
doing increased our productivity. I would like to stress
that our testing was done while we were actively designing
a new printer as a team. If we had felt we were being slowed
down by ME Series 10 we would have gone back to HP
Draft because finishing the design and bringing our own
product to market was, of course, our highest priority. The
fact that we never looked back once we got up on the
program is a testament to its basic functionality and the
support we received from BÃ²blingen on bug fixes.

The ME Series 10 authors now have a product that has
passed through the hands of real-world users. Using us as
an alpha test site involved extra effort for both groups, but
each found benefits coming from the work. I hope we can
do it again.

Acknowledgments
Members of the design team at VCD who tested ME Series

10 included Rick Berriman, Don Bloyer, Dave Cast, Larry
Jackson, Brian King, Dave Pinkernell, and Steve Rasmus-
sen.

MAY 1987 HEWLETT-PACKARD JOURNAL 33

© Copr. 1949-1998 Hewlett-Packard Co.

Authors
May 1987

: CAD Workstat ions:

Karl -Heinz Werner
Kar l -Heinz Werner holds a
PhD deg ree i n ma the
matics from SaarbrÃ¼cken
University and has been at
HP since 1 983. He has con
tr ibuted to the development

I o f HP DesignCenter ME
_ ^ ^ S e r i e s 1 0 a n d S e r i e s 3 0 a s

well as other products. Karl-
Heinz was born in Volk-

l ingen and is now a resident of Deckenpfronn. He's
married and has two children. His outside interests
inc lude amateur mov ie-making, photography,
opt ics , and music .

Dieter Som mer
Dieter Sommer came to HP
in 1984, the same year he
received h is degree in

. computer science from the
I Universi ty of Stuttgart. He
i was responsible for the tab-
' le t over lay and screen

menus for HP Des ign-
Center ME Series 1 0 and is
now work ing on produc t

enhancements. Born in Stut tgart , Dieter l ives in
Magstadt and is married. He sings in a choir, plays
v io l in, and l ikes dancing.

Dieter Deyke
I With HP since 1 979, Dieter

Deyke contr ibuted to the
development of HP Design-
Center ME Ser ies 10 and
ME Ser ies 30. He has
worked on s torage, a

. macro language, com-
I mand decod ing , and low-
' level drivers. His Diplom In-

gen ieur was awarded by
the Engineering School at Esslingen. He was born
in Goppingen and now l ives in Gar t r ingen. He 's
marr ied and has th ree sons and a daughter .

W o l f g a n g K u r z
Wolfgang Kurz joined HP in
1981 and has deve loped
sof tware for several CAD
sys tems , i nc lud ing HP De
signCenter ME Ser ies 10.
He was born in MÃ¼hlen-
rahmede and s tud ied fo r
h is Dip lom Ingenieur at
Paderborn. He cont inued
his studies at the Ruhr Uni

vers i ty o f Bochum and at Purdue Univers i ty , f rom
which he rece ived an MSEE degree. Wol fgang is
a resident of BÃ²blingen and lists flying, sailing, and
bicycl ing as his favor i te recreat ional act iv i t ies.

Heinz P. Arndt
A native of Stuttgart, Heinz
Arndt s tud ied computer
science at the University of
Stut tgar t and received his
degree in 1983. He jo ined
HP the same year and has
worked on software for vari-

I ous CAD sys tems. H is de
s ign contr ibut ions on HP
DesignCenter ME Series 1 0

include the plotter, binary storage, and parts of the
internal data structure. Heinz is married and enjoys
travel , sports, and reading, especial ly science f ic
tion. He's also interested in personal computers and
artificial intelligence.

1 6 â € ” M E C A D G e o m e t r y

Karl-Heinz Werner
Author 's b iography appears e lsewhere in th is

section.

Harold B. Prince
A native of Atlanta, Geor

gia, Hal Prince received an
MA degree in mus ic f rom
Harvard Universi ty in 1976
and an MS degree in com
puter sc ience f rom Yale
Un ivers i ty in 1979. He de
veloped UNIX sof tware for

! a sma l l Los Ange les com-
A I Ã ­ / p a n y b e f o r e j o i n i n g H P i n
1984. His contr ibut ion for HP DesignCenter ME
Series 1 0 centered on the parts and UNIX system
interfaces. Hal l ives in Gartringen, WÃ¼rttemberg
and en joys read ing, mathemat ics , and European
culture.

Friedhelm M. Ott l iczky
Fr iedhelm Ot t l i czky re
ce ived h is degree in
mechanica l engineer ing

' f rom the Techn ica l Un iver
sity of Karlsruhe and joined
HP in 1984. His pr imary
contribution at HP has been
the topo log ica l da ta s t ruc
ture for HP DesignCenter
ME Series 10. Fr iedhelm

was born in KÃ¼nzelsau and now l ives in Weil,
SchÃ²nbuch. His le isure act iv i t ies include classic
cars, motorcyc l ing, and sk i ing.

Stephen Yie
Stephen Yie jo ined HP's
BÃ²bl ingen Engineering Op
eration in 1 983 and contrib
uted to the development of
HP DesignCenter ME
Series 1 0. Recently, he has
worked on so f tware loca l i
zat ion and appl icat ions
and has provided technical
support for ME Ser ies 10.

He has a bachelor 's degree in mathemat ics f rom
the University of Cologne and a 1 982 doctoral de
gree in mechanica l engineer ing f rom the
Rhein isch-West fa l isch-Technische Hochschule at
Aachen. Stephen was born in Jakar ta, Indonesia,
and now lives in BÃ²blingen. He and his wife have
three chi ldren. His recreat ional act iv i t ies include
tennis , a ik ido, p lay ing p iano and gui tar , and
Chinese cooking.

Heinz Diebel
Heinz Diebel is a nat ive of
S tu t tgar t and ho lds a D ip
lom Ingenieur from the Uni
versity of Stuttgart. With HP
since 1 980, he has worked
on a number of in ternal
R&D projects and has con
tributed to the design of HP
DesignCenter ME Series 1 0
and ME Ser ies 30. Heinz

now l ives in BÃ²bl ingen and enjoys tennis, swim
ming, and f ly ing motorgl iders.

3 0 ~ A l p h a S i t e E v a l u a t i o n ^ ^ ^ ^ = ^ ^ =

Paul Harmon
* Pau l Harmon jo ined HP 's

McMinnvi l le Division in
1981 af ter receiv ing his
BSME degree from the Uni
vers i ty of Washington. He
has worked on mechanical
engineer ing des igns for a
number o f R&D pro jec ts
and was i nvo l ved i n p rod
uct test ing for HP Design-

Center ME Series 1 0. His work on printhead inter
connect ions has resul ted in a patent appl icat ion.
In addition to his HP work, he is studying for a mas
ter 's degree in mechanical engineering from Stan
ford Univers i ty . Born in Hermiston, Oregon, Paul
and his wife and new daughter l ive in Vancouver,
Washington. He enjoys motorcyc les, spor ts cars,
programming, and church act iv i t ies.

3 5 = P o w e r - L i n e ' A N

Robert A. Piety
With HP s ince 1972, Bob
Piety is a development en
gineer at HP Laborator ies.
He's current ly designing
sof tware and hardware for
v ideo graph ics sys tems
and p rev ious l y cha rac
ter ized RF transmission
proper t ies o f ac power
lines, the subject of his HP

Journal paper. Among other accompl ishments, he
has developed 1C test systems and has designed
and bui l t d ig i ta l and analog contro l lers . He's a lso
work ing toward an MSCS degree f rom Cal i fo rn ia
State University at Chico. When Bob is not working
or studying he enjoys reading, woodworking, gar
dening, ski ing, swimming, photography, camping,
electronics, and computers. Several years ago he
and h is w i fe bu i l t the i r cur ren t home and land
scaped the grounds.

34 HEWLETT-PACKARD JOURNAL MAY 1987

© Copr. 1949-1998 Hewlett-Packard Co.

Intrabui lding Data Transmission Using
Power-Line Wiring
An investigation of the transfer and noise characteristics of
intrabuilding power lines has indicated the feasibil ity of their
use for local data communication at data rates greater than
WOkbits/s. Within certain constraints, data rates of1Mbits/s
or greater are possible. This paper discusses typical power-
l ine character ist ics in the 1 - to-20-MHz region and one
implementation of a 100-kbits/s spread spectrum data l ink
operating in the 3. 5-to-1 0.5-MHz range.

by Robert A. Piety

CARRIER-CURRENT COMMUNICATION is not new.
Utility companies have used this technique for con
trol, telemetering, and communication over high-

voltage lines since the early 1920s.1 Most nonutility users,
however, operate on the low-voltage, 120/240V lines. Uni
versity campus radio systems have often used the power
lines for campus-wide broadcast-band programming. Other
devices that use carrier-current communications include
cordless telephones, intercoms, music systems, appliance
controllers, and burglar alarms. Recently, local area net
works (LANs) that communicate over the power lines have
become commercially available.

Virtually all existing carrier-current systems operate in
the lO-to-500-kHz range,2 with the exception of the campus
radio systems. Use of such low frequencies usually limits
the data bandwidth of these systems to less than 10 kHz.
Until recently, such data rates and bandwidths have been
sufficient for most applications. However, the current ex
plosive growth in the use of distributed computers and
terminals in offices and factories has created a demand for
higher-bandwidth LANs.

Several obstacles must be overcome when dealing with
the power line's hostile environment. High noise levels
and high signal attenuation are common. Furthermore,

0

-10

-20

-30

-40
d B

-50

-60 -

-70

-80 -

RES BW = 10 KHZ
-100J â€” i â€” h â€”

0 2 4 1 0 M h z 1 2

F i g . 1 . T y p i c a l a t t e n u a t i o n a n d
background no ise fo r a 100- foot -
long power- l ine path (reference =
OdBm, resolut ion bandwidth = 10
kHz).

MAY 1987 HEWLETT-PACKARD JOURNAL 35

© Copr. 1949-1998 Hewlett-Packard Co.

these conditions not only vary from site to site,3'4 but (along
with impedance) also vary with time. To evaluate these
difficulties, a variety of measurements were carried out at
several different commercial buildings.

Line Characterist ics
First, the power-line impedance was measured to deter

mine what type of coupling network would be required.
The results were site and frequency dependent â€” imped
ance magnitudes in the l-to-10fi range at 100 kHz to the
20-to-120il range at 10 MHz were observed. The results
indicate that 50Ã1 provides a fair match, especially at the
higher frequencies. Transfer characteristics measured from
earth ground to the energized (hot) conductor were not
substantially different from those taken between the com
mon and hot lines. Hence, subsequent data was usually
taken between the hot and earth ground conductors.

Using a spectrum analyzer and a sweep generator, attenu
ation and background noise measurements were made at
several locations, including different buildings in the Palo
Alto, California, area. Since all buildings tested were com
mercial structures and wired in accordance with the U.S.A.
Uniform Building Code, attenuation results did not vary
widely. Noise characteristics, however, did vary consider
ably, being worst in areas containing heavy electrical ma
chinery. Background noise at these locations in a 10-kHz
bandwidth was as high as - 20 dBm at 1 MHz, dropping
to - 65 dBm at 10 MHz. Typically, in most other areas, the
noise was 20 dB lower. Also observed were random, in
frequent, broad-spectrum noise spikes of high (>0 dBm)
amplitude.

The signal coupling between the three power-line phases
and between branch circuits is quite high above 100 kHz.
Typically, a signal injected into one circuit was detected

at the same levels within 3 to 5 dB in other circuits that
were routed in the same conduit. It is extremely difficult,
if not impossible, to isolate a specific signal path because
of this coupling. Hence, data for attenuation versus distance
can fluctuate wildly. Therefore, radial distances were used
to specify the path length for a given situation (rather than
the actual, often unknown, route). Over 30-meter radial
distances the typical attenuation was 20 to 30 dB at 1 MHz
and 40 to 60 dB in the lO-to-20-MHz range as shown in
Fig. 1.

Much of the attenuation is caused by equipment plugged
into the power-line network. For example, the typical office
and laboratory environment contains numerous pieces of
electronic equipment such as power supplies, oscillo
scopes, CRT terminals, desktop and other computers, disc
drives, printers, etc. Most of these remain plugged into the
power line whether or not they are switched on at the time
of the test. Virtually all have a capacitor and/or inductor
line filter designed to shunt and/or block radio frequencies
traveling in either direction. The shunting effect of these
filters is responsible for much of the attenuation observed.
Switching the equipment on or off usually makes little
change in this attenuation.

A comparison experiment, in which all the equipment
was unplugged from a 100-foot-long circuit path, produced
interesting results as shown in Fig. 2. The top curve shows
the power-line attenuation with the equipment unplugged.
Because each wire shares the same conduit with other cir
cuits and there is excellent coupling between them, the
effects of all the equipment coupled to the line cannot be
totally removed â€” only minimized. When the equipment
was plugged in, there was a 20-to-30-dB increase in average
attenuation, as well as spectral differences in the position
and depth of attenuation notches and an increase in their

-100

Fig. 2. At tenuat ion losses caused
b y e q u i p m e n t o n p o w e r l i n e .
Upper cu rve i s f o r equ ipmen t re
m o v e d a n d l o w e r c u r v e i s f o r
equ ipment p lugged in (reso lu t ion
bandw id th = 10 kHz) .

36 HEWLETT-PACKARD JOURNAL MAY 1987

© Copr. 1949-1998 Hewlett-Packard Co.

number. These notches are a result of resonances caused
by the lumped and residual reactances associated with the
equipment and line filters, as well as standing waves on
the lines. Because of these effects, there are often significant
differences in attenuation at any given frequency between
outlets close to one another.

Attenuation not only varies with location, it also varies
with time. This is caused by the ever changing load on the
power line with equipment frequently being plugged in,
unplugged, switched, or moved from one location to
another. Sharp attenuation notches not only continually
form and disappear, but change frequency and depth. Fig.
3 shows broad and narrow attenuation changes (as much
as 40 dB) recorded over a three-week period in one labora-
tory-and-office environment. It is clear that the use of a
narrowband communication scheme in such a hostile en
vironment is impractical unless extremely high transmitted
power is used. Although it may be possible to deal with
these narrowband problems through manual or automatic
carrier-frequency changes, wideband communication
methods appear better suited for this environment. An in
teresting form of wideband communications considered
for this situation is spread spectrum.

Spread Spectrum
Spread spectrum transmission is a relatively new com

munications method where the baseband signal is spread
over a wide frequency band â€” much wider than the required
bandwidth f or the information itself. Spread spectrum com
munication appears very suitable for power-line applica
tions because it has high immunity to narrowband interfer
ence and varying attenuation notches. This immunity is
approximately the RF bandwidth divided by the data rate.
(This ratio is called the processing gain.) Another advantage

of this type of modulation is that the transmitted energy
is spread over such a wide frequency band that there is
little or no interference with narrowband systems. One
disadvantage in these systems is that the wide-bandwidth
front-end amplifier is more likely to be subject to overload
from strong interfering signals.

There are several spread spectrum schemes including
wideband FM, frequency hopping, direct sequence, chirp,
and various hybrid forms employing combinations of the
above. (Wideband FM is not usually considered spread
spectrum since, in this case, the spreading is a function of
the information signal alone.) A process or signal other
than the information itself is used for spreading the signal
bandwidth in all conventional spread spectrum systems.5

The basic principle of frequency hopping involves the
radio carrier's hopping from one discrete frequency to
another in a pseudorandom fashion. The receiver must
have knowledge of the frequencies, their specific hopping
sequence, and their rate, and must be synchronized with
the transmitter before successful reception of the informa
tion is possible.

Chirp spread spectrum uses a swept signal. The receiver
must know the frequency range and sweep rate to detect
the signal successfully. Dispersive delay lines matched to
the angular rate of frequency change are often used to recon
struct the chirp signal.

Direct-sequence spread spectrum uses a high-rate
pseudorandom digital sequence to modulate the radio-fre
quency carrier directly. Detection requires synchronously
mixing a copy of the pseudorandom sequence or using a
SAW (surface-acoustic-wave) device6 or tapped-delay-line
correlator that is matched to the specific spreading code.
This latter type of system was chosen for our power-line
communications because it is simple to implement; it also

Fig. 3. Var iat ion in at tenuat ion on
d i f f e r e n t d a y s (r e s o l u t i o n b a n d
w id th = 10 kHz) .

MAY 1987 HEWLETT-PACKARD JOURNAL 37

© Copr. 1949-1998 Hewlett-Packard Co.

demonstrates the capability of low-power data links to op
erate reliably on the power line.

Similar work with spread spectrum communication on
power lines was done earlier by Heinz Ochsner7 in Switzer
land. Although the frequencies and data rates reported by
him are much lower than those used here, the obstacles,
methods, results, and conclusions are quite similar.

The Hardware
To evaluate power-line data transmission feasibility, a

direct-sequence spread spectrum transmitter and receiver
were built as shown in Figs. 4 and 5. A 31-bit pseudoran
dom spreading code, clocked at 3.5 MHz, is used to biphase
modulate a 7-MHz carrier. For each data bit, all 31 spread
ing code bits (chips) are sent. The data bit can invert the
chip sequence in antipodal modulation or, for simplicity,
can amplitude modulate the output amplifier as done in
this case. Thus, a one is represented by the transmission
of the 31 chips and a zero by an absence of signal. The
resulting data rate in the system is 112.9 kbits/s.

The (sin x/x)2 output envelope is shown in Fig. 6. Since
90% of the energy is contained in the main lobe from 3.5
to 10.5 MHz, the lower and upper lobes can be filtered out
without significant performance degradation. (In Fig. 6, a
27-MHz clock was used instead of 28 MHz; thus the fre
quencies of spectral features shown are offset slightly.)

The receiver amplifies the signal and digitizes it using
a ground-referenced comparator. The resulting digital sig
nal is shifted through a 124-stage shift register whose paral
lel outputs are analog summed to either of two nodes. Since
the chip rate is 3.5 MHz, and the carrier is at 7 MHz, there
are two complete sine waves for each of the 31 chips. Since
each sine wave has a positive and a negative peak, there
are a total of 124 such peaks for each data bit. Thus, each
register output is connected through a resistor to the sum
ming node in a manner corresponding to the expected po
larity of the signal at that particular instant in time.

As the pseudorandom signal stream shifts through, the
summing nodes show only a small background signal
whose relative amplitude is determined by the specific
pseudorandom spreading code used. A sequence with a
low background value was specifically chosen. When all
124 bits shift into their expected positions, the now-corre
lated signal produces a strong peak at the summing nodes,
as shown by the simulation in Fig. 7. This bipolar signal
is squared, integrated, and synchronously detected to re
cover the original data.

Since an analog delay line was not practical and the
receiver's clock is not synchronized with the transmitter,
two identical shift registers were built, the second being
clocked at a 90Â° offset from the first. By using the summed
and squared outputs of these correlators and summing them
again, the need for clock synchronization is eliminated. In
retrospect, a phase-locked loop and a single shift register
could have been a simpler and better choice.

The transmitter output power is 5 mW, which corre
sponds to a very low power density of 0.75 nW/Hz and is
equivalent to 7.5 /Â¿W in a 10-kHz bandwidth. Over a 100-
foot transmission path through the power lines the data
was recovered with typical bit error rates (BERs) of 10~6
to 10~7. Increasing power did not substantially improve
BER, although the working distance was extended. This
suggests that unusually strong transients, rather than the
typical background noise, are responsible for most of the
residual errors. Since these transients are relatively in
frequent, retransmission or redundancy-error correction
can be used to overcome their effects.

Interference tests indicated that the noise level radiated
by the transmitter was approximately the same as that
radiated by a disc drive. Both were found to be - 70 dBm
at a distance of 3 meters using a 1-meter vertical antenna
and a calibrated spectrum analyzer. Average background
noise in the building was â€” 85 dBm.

Although performance differences between balanced and
unbalanced coupling to the power line were slight, balanced
transmission may be a better choice since the power lines
then radiate less energy than for unbalanced transmission.

Conclusion
This work has shown that the usable data bandwidth of

the power lines is much higher than had been previously
reported, thus permitting data rates suitable for high-speed
LANs to be transmitted over a building's existing power
lines. Because of the dynamic nature of the power-line
environment, especially pertaining to narrowband interfer
ence, spread spectrum techniques are well suited for this
application. The insurmountable transients that do inevit
ably occur are relatively infrequent, so reasonable error
rates are attainable. By using the full bandwidth available
and raising the spreading code rate, data rates of 1 Mbit/s
or greater are possible. Here again, the key to power-line
communications is to use wide-bandwidth signals to
minimize the effects of narrowband interference and chang
ing attenuation patterns.

3 1 - B i t

A C L i n e

3 . 5 - M H z - t o - 1 0 . 5 - M H z
S p r e a d S p e c t r u m

O u t p u t
F i g . 4 . P o w e r - l i n e s p r e a d s p e c
trum transmitter.

38 HEWLETT-PACKARD JOURNAL MAY 1987

© Copr. 1949-1998 Hewlett-Packard Co.

C o m p a r a t o r C L O C K Cor re la to r

In tegra tor

Fig. 5 . Power- l ine spread spect rum rece iver .

Reliable, high-speed, power-line data communication is
well-suited to installations where wiring expenses for such
communications are excessive or not practical, such as fac
tory floors, older buildings, temporary or movable installa
tions, and certain computer-peripheral interfacing situations.

A c k n o w l e d g m e n t s
The author wishes to thank Zvonko A. Fazarinc, director

of the Measurement & Communication Laboratory, Hew
lett-Packard Laboratories, for suggesting the problem and
for providing the opportunity to do this work, and to R. A.
Baugh, R. D. Crawford, B. J. Elliott, J. P. Freret, and R. L.
Wheeler for their contributions throughout this investigation.

R e f e r e n c e s
1. M.P. Perry and M.R. Stambach, "A System Analysis of Power
Line and Communications with Gas Insulated Conductors and
Overhead Lines," Canadian Communications & Power Conference,
1980, pp. 240-243.
2. "Summary of an IEEE Guide for Power-Line Carrier Applica
tions," IEEE Transactions on Power Apparatus and Systems, Vol.
PAS-99, no. 6, November/December 1980, pp. 2334-2337.
3. S.N. Talukdar and J.C. Dangelo, "Uncertainty in Distribution PLC
Attenuation Models," IEEE Transactions on Power Apparatus and
Systems, Vol. PAS-99, no. 1, January/February 1980, pp. 328-334.
4. J. Communi "Using Electric Power Distribution Lines as a Communi
cation Network," IEEE International Conference on Circuits and
Computers, Vol. 2, 1980, p. 1010.

Â « . _ _ _ _ _ _ _ L + _ _ _ _

1 8 2 0
F i g . 6 . F r e q u e n c y s p e c t r u m o f
spread spect rum s ignal .

MAY 1987 HEWLETT-PACKARD JOURNAL 39

© Copr. 1949-1998 Hewlett-Packard Co.

5. R.C. Dixon, Spread Spectrum Systems, John Wiley & Sons, New
York, 1976.
6. W.R. Shreve, "Radio Data Link," Hewlett-Packard JournaJ, Vol.
33, no. 1, January 1982, p. 7.
7. H. Ochsner, "Data Transmission on Low Voltage Power Distribu
tion Lines Using Spread Spectrum Techniques," Canadian Com
munications & Power Conference, 1980, pp. 236-239.

-10 - 5 0 5
C H I P S O F F S E T

10 15

Fig. 7 . Corre lator output .

a y 1 9 8 7 V o l u m e 3 8 â € ¢ N u m b e r 5

Technical Information from the Laborator ies of
Hewlett -Packard Company

Hewlet t -Packard Company, 3200 Hi l lv iew Avenue
Palo Alto, Cal i fornia 94304 U.S.A.

Hewlet t -Packard Centra l Mai l ing Department
P O Box 529. S tar tbaan 16

1180 AM Amste lveen, The Nether lands
Yokogawa-Hewlet t -Packard Ltd , Suginami-Ku Tokyo 1 68 Japan

Hewlet t -Packard (Canada) L id
6877 Goreway Dr ive, Miss issauga, Ontar io L4V 1MB Canada

H E W L E T T
P A C K A R D

5953-8560

© Copr. 1949-1998 Hewlett-Packard Co.

	State-of-the-Art CAD Workstations for Mechanical Design
	ME Series 10 Link to HP-FE
	The ME Series 10 NC Links
	ME CAD Geometry Construction, Dimensioning, Hatching and Part Structuring
	Alpha Site Evaluation of ME Series 5/10
	Intrabuilding Data Transmission using Power-Line Wiring

